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Linear models for classification
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Discriminant functions

« A common way to represent a classifier is by using
— Discriminant functions
» Works for both the binary and multi-way classification
* ldea:
— Forevery classi = 0,1, ...k define a function g; (x)
mapping X —> R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y* = arg max; g;(x)
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Logistic regression model

+ Discriminant functions:
9,(x) = g(W'x) 9o (x) =1-g(W'x)
» Values of discriminant functions vary in interval [0,1]
— Probabilistic interpretation

f(x,w) = p(y =1|w,X) = g,(x) = g(W'x)
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Logistic function
Function: g(z) =

@+e™®)

* Is also referred to as a sigmoid function

« takes a real number and outputs the number in the interval [0,1]

» Models a smooth switching function; replaces hard threshold
function

Logistic (smooth) switching Threshold (hard) switching




Logistic regression model. Decision boundary

» LR defines a linear decision boundary
Example: 2 classes (blue and red points)

2

1.5

Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y | X)
« An example of a discriminative classification approach

« Model is unable to sample (generate) data instances (X, y)
Generative approach:
« Represents and learns a joint distribution pP(X,y)
» Model is able to sample (generate) data instances (X, y)
» The joint model defines probabilistic discriminant functions

HOW? o ) = p(y =1]x) = P&Y =D _ p&xly=1p(y =1)
' p(X) pP(X)

0,00 = p(y —0x) = PEY=0) _ P(X]y=0)p(y=0)
° p(X) p(X)

p(y=0[x)+p(y=1[x)=1




Generative approach to classification

Typical joint model p(X,y) = p(xX|y)p(y)
« p(x|y) = Class-conditional distributions

(densities)

binary classification: two class-conditional

distributions

p(x|y=0) p(x|y=1) px1y)

« pP(Y) =Priorson classes

— probability of class y

— for binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

p(y)

Quadratic discriminant analysis (QDA)

Model:
+ Class-conditional distributions are
— multivariate normal distributions
X~N(py,x,) for y=0
X~N(p,2,) for y=1
Multivariate normal X~ N(n, X)

1 1

pP(X|p,X) = —exp[— S(xX—m)' T (x~ u)}
(27)""?| 5" 2

« Priorson classes (class0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y.0)=0"1-0)">  ye{0l}




Learning of parameters of the QDA model

Density estimation in statistics

» We see examples — we do not know the parameters of
Gaussians (class-conditional densities)

p(X |1 X) = em{—%@—uﬂz*a—uﬂ

L
(272_)(:1/2 |Z|1/2

« ML estimate of parameters of a multivariate normal N (p, X)
for a set of n examples of x

Optimize log-likelihood: 1(D,p,X) = Iogﬁ p(x; |m, X)
i=1

ﬁzlzn:xi >
N4

« How about class priors?

n

(%, — )X, — )

i=1

S|k

Learning Quadratic discriminant analysis
(QDA)
» Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

X~N(py,x,) for y=0
X~N(p,2,) for y=1

— Use the density estimation methods

« Learning Priors on classes (class 0,1) y ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(y,0)=0"1-0)" ye{0L}
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2 Gaussian class-conditional densities

Class conditional densities




QDA: Making class decision

Basically we need to design discriminant functions

 Posterior of a class — choose the class with better posterior
probability

P(y=1|x)>p(y=0[X)  m=p then y=1
9.(x) 9. (%) else y=0

P(X| 4, 2,) p(y =1)

—1|x) =
Ply=11>) P(X| 20, Zo) P(Y = 0) + p(X| 14, E;) p(y =1)

 Notice it is sufficient to compare:
POX| 4, X)) p(Y =1) > p(X]| 145, Z,) p(y =0)

QDA: Quadratic decision boundary

Contours of class-conditional densities




QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)

« Assumes covariances are thesame X~ N(p,,X),y=0

x~N(u, X), y=1




LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary




Generative classification models
Idea:
1. Represent and learn the distribution p(x,y)
2. Model is able to sample (generate) data instances (X, Y)
3. The model is used to get probabilistic discriminant
functions g, (x)=p(y=0[x) g,(x) = p(y=1|x)
Typical model p(x,y) = p(x|y)p(y)
* p(x]y) = Class-conditional distributions (densities)

binary classification: two class-conditional distributions
p(x|y=0) p(x|y=1)
* p(y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption:

« All input attributes are conditionally independent of each
other given the class.

» One of the basic ML classification models (often performs quite
well in practice)

So we have: P(Y)
: oy
P(X, y) = p(X|y)p(y) \
pxIy) =TT p(x 1Y)
(% 1Y) /p(x, 1Y) p(Xs |'Y)
O O
X X, Xq
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Learning parameters of the model

Much simpler density estimation problems
« We need to learn:
p(x|y=0) and p(x|y=1) and p(y)

 Because of the assumption of the conditional independence we
need to learn:

for every input variable i: p(X; | Yy =0) and p(x; |y =1)
« Much easier if the number of input attributes is large

 Also, the model gives us flexibility to represent input
attributes of different forms !!!

« E.g. one attribute can be modeled using the Bernoulli, the
other using Gaussian density, or a Poisson distribution

Making a class decision for the Naive Bayes

Discriminant functions

 Posterior of a class — choose the class with better posterior
probability

P(y=1|x)>p(y=0[X) then y=1
else y=0

(H p(X; |®1,i)jp(y =1)

i=1

P(y =1[%) =7 d
(H p(x |®1,ij)p(y=0)+( [] plx I®z,i)j p(y =1)
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Next: two interesting questions

(1) Two probabilistic models with linear decision boundaries:

— Logistic regression
— LDA model (2 Gaussians with the same covariance
matrices X~N(gp,2) for y=0
X~N(,2) for y=1

» Question: Is there any relation between the two models?
(2) Two models with the same gradient:

— Linear model for regression

— Logistic regression model for classification

have the same gradient update n

W< W"'aZ(Yi - f(x))x,
i=1

» Question: Why is the gradient the same?

Logistic regression and generative models

« Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices  x ~ N(y,,=) for y=0
X~N(g,2) for y=1
Question: Is there any relation between the two models?
Answer: Yes, the two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

ply =1|X,po, 1y, X) = g(WTX)

CS 2750 Machine Learning
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Logistic regression and generative models

« Members of the exponential family can be often more

naturally described as
0" x—A(0
£ (x10,0) = h(x,¢) exp{—”}

a(o)

0 - Alocation parameter ¢ - Ascale parameter

« Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !'!!

— We can represent posteriors of many distributions with
the same small logistic regression model

CS 2750 Machine Learning

The gradient puzzle ...

Linear regression Logistic regression
f(x) =w'x ()= p(y=1]xw)=gw'x)
1
WO
X, w 2 f(x)

N><
Ks

Xd
Gradient uPdate: Gradient update:
wewta) (y-f))x  Thesame  wew+ad (y - f(x)x,
i=L i=L
Online: W(—W+O{(y— f(X))X Online: W<—W+0[(y— f(X))X

CS 2750 Machine Learning
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The gradient puzzle ...

« The same simple gradient update rule derived for both the
linear and logistic regression models

» Where the magic comes from?

 Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise G Gaussian noise

y=W'x+& &~N(0,07?)

— Logistic + Bernoulli

Bernoulli trial

f: g(w'x) i y

y = Bernoulli(@)
0 =p(y=1|x) =g(w'x) K

X4

Generalized linear models (GLIMs)

Assumptions:
» The conditional mean (expectation) is:
u=f(w'x)
— Where f(.) isa response function

« Output y is characterized by an exponential family distribution
with a conditional mean u

Examples:
— Linear model + Gaussian noise
y=W'x+& &~N(0,0%)

— Logistic + Bernoulli -

y =~ Bernoulli(9) .

=g(wW'x) =

Gaussian noise

Bernoulli trial

f: g(w'x) é y

_—
1+e™ X X4
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Generalized linear models (GLIMS)

+ A canonical response functions f(.) :
— encoded in the sampling distribution

p(x|0,¢) =h(x,¢) exp{e);z—(:)‘(e)}

« Leads to a simple gradient form
« Example: Bernoulli distribution

p(X| p2) = p* Q= p)** = exp{log(l “JH log(l—ﬂ)}

M 1
6 =log| _
g(l—,u] Ho 1 e?

— Logistic function matches the Bernoulli

Evaluation of classifiers

CS 2750 Machine Learning

15



Classification model learning

Learning:
« Many different ways and objective criteria used to learn the

classification models. Examples:
— Mean squared errors to learn the discriminant functions

— Negative log likelihood (logistic regression)

Evaluation:
« One possibility: Use the same error criteria as used during the

learning (apply to train & test data). Problems:
— May work for discriminative models

— Harder to interpret for humans.
* Question: how to more naturally evaluate the classifier

performance?

Evaluation of classification models

For any data set we use to test the classification model on we can

build a confusion matrix:

— Counts of examples with:
— class label @ that are classified with a label ;

target
| wo=1 w=0
a =1 140 17
20 54

predict

16



Evaluation of classification models

Confusion matrix entries are often normalized with respect to

the number of examples N to get proportions of the
different agreements and disagreements among predicted

and target values

target
w=1 =0
140/231 17/231

20/231 54/231

e
predict
o

Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target
‘ wo=1 w=0
14 17
2 5

a=1

redict
P a=0

Classification Accuracy = 194/231

17



Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target
wo=1 w=0
. o 14 17
predict
a =0 20 54

Classification Accuracy = 194/231
Misclassificion Error = 37/231 =1 - Accuracy

Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

wo=1 w=0
) a=1 TP FP
predict
a=0 FN TN

TP: True positive (hit)
FP: False positive (false alarm)
TN: True negative (correct rejection)

FN: False negative (a miss)

18



Additional statistics

+ Sensitivity (recall) TP
SENS =
TP +FN
* Specificity
SPEC = _IN
TN +FP

« Positive predictive value (precision)

PPT = ™
TP+ FP
« Negative predictive value
NPV = _IN
TN + FN

Binary classification: additional statistics

« Confusion matrix

target
1 0
predict 1 140 10 PPV =140/150
0 20 180 NPV =180/200
SENS =140/160 SPEC =180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)
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Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

T _ Normal or
W X+ WO =0 direction of a plane

Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

WTX +W, = 0 Normal or
direction of a plane

W' X + W,

20



Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

WTX +W, = 0 Normal or
direction of a plane

|
. Question: how good is the
. model with parameters w in

terms of class discriminability
at different decision thresholds?

I ."..“4:. W' X + W,

Receiver Operating Characteristic (ROC)

, 602
* Probabilities:
— SENS P(X>X*|X e w,)
- SPEC threshold P(X <X*|X € w,)

21



Receiver Operating Characteristic (ROC)

* ROC curve plots :

SN= p(X>x*|Xew,) - @2 @
1-SP= p(X > X*| X € @) - A

for different x* P

SENS ;%///’”

P(X>X*|xXew,)

"1-SPEC  P(X> x*|x < ®,)

ROC curve

Case 1 = Case 2 = Case 3

\

X>X*|Xew,)oe
p * 2

o.8

0.7

o6/
0.5H

0.4 i

I 1 1 1 1 1 I I

0.3

0.2

0.1 —

o

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7

O.rS U.rS ;.
p(X>X*|X € ,)
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Receiver operating characteristic

+ ROC

— shows the discriminability between the two classes under
different thresholds representing different decision biases

+ Decision bias
— can be changed using the different loss function

* Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5
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