Reinforcement learning

Basics:

- **Learner interacts with the environment**
 - Receives input with information about the environment (e.g. from sensors)
 - Makes actions that (may) effect the environment
 - Receives a reinforcement signal that provides a feedback on how well it performed
Reinforcement learning

Objective: Learn how to act in the environment in order to maximize the reinforcement signal

- The selection of actions should depend on the input
- A policy \(\pi : X \rightarrow A \) maps inputs to actions
- **Goal:** find the optimal policy \(\pi : X \rightarrow A \) that gives the best expected reinforcements

Example: learn how to play games (AlphaGo)

Gambling example

- **Game:** 3 biased coins
 - The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of $1. If after the coin toss, the outcome agrees with the bet, the agent wins $1, otherwise it loses $1
- **RL model:**
 - **Input:** X – a coin chosen for the next toss,
 - **Action:** A – choice of head or tail the agent bets on,
 - **Reinforcements:** \{1, -1\}
- **A policy** \(\pi : X \rightarrow A \)
- Example:
 \[
 \begin{array}{c|c|c}
 \text{Coin} & \rightarrow & \text{head} \\
 1 & \rightarrow & \text{tail} \\
 2 & \rightarrow & \text{head} \\
 \end{array}
 \]
Gambling example

RL model:
- **Input:** X – a coin chosen for the next toss,
- **Action:** A – choice of head or tail the agent bets on,
- **Reinforcements:** $\{1, -1\}$
- **A policy** π: $\begin{pmatrix}
 \text{Coin1} & \rightarrow & \text{head} \\
 \text{Coin2} & \rightarrow & \text{tail} \\
 \text{Coin3} & \rightarrow & \text{head}
\end{pmatrix}$

State, action reward trajectories

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step k</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>Coin2</td>
<td>Coin1</td>
<td>Coin2</td>
</tr>
<tr>
<td>action</td>
<td>Tail</td>
<td>Head</td>
<td>Tail</td>
</tr>
<tr>
<td>reward</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Gambling example

Learning goal: find the optimal policy

$\pi^*: X \rightarrow A$

π^*: $\begin{pmatrix}
 \text{Coin1} & \rightarrow & ? \\
 \text{Coin2} & \rightarrow & ? \\
 \text{Coin3} & \rightarrow & ?
\end{pmatrix}$

$\pi^*:$ $\begin{pmatrix}
 \text{Coin1} & \rightarrow & ? \\
 \text{Coin2} & \rightarrow & ? \\
 \text{Coin3} & \rightarrow & ?
\end{pmatrix}$

maximizing future expected rewards

$$E(\sum_{t=0}^{T} \gamma^t r_t) \quad 0 \leq \gamma < 1$$

a discount factor = present value of money
Expected rewards

- Expected rewards for $\pi : X \rightarrow A$

 $E(\sum_{t=0}^{T} r_t)$
 Expectation over many possible reward trajectories defined by $\pi : X \rightarrow A$

Expected discounted rewards

- Expected discounting rewards for $\pi : X \rightarrow A$
- Discounting with $0 \leq \gamma < 1$ (future value of money)

No discounting:

- $E(\sum_{t=0}^{T} r_t)$
 Expectation over many possible discounted reward trajectories for $\pi : X \rightarrow A$
RL learning: objective functions

- **Objective:**
 Find a policy \(\pi^* : X \rightarrow A \)
 That maximizes some combination of future reinforcements (rewards) received over time

- **Valuation models** (quantify how good the mapping is):
 - **Finite horizon models**
 \[
 E\left(\sum_{t=0}^{T} r_t \right) \quad \text{Time horizon: } T > 0
 \]
 \[
 E\left(\sum_{t=0}^{T} \gamma^t r_t \right) \quad \text{Discount factor: } 0 \leq \gamma < 1
 \]
 - **Infinite horizon discounted model**
 \[
 E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right) \quad \text{Discount factor: } 0 \leq \gamma < 1
 \]
 - **Average reward**
 \[
 \lim_{T \rightarrow \infty} \frac{1}{T} E\left(\sum_{t=0}^{T} r_t \right)
 \]

Agent navigation example

- **Agent navigation in the maze:**
 - 4 moves in compass directions
 - Effects of moves are stochastic – we may wind up in other than intended location with a non-zero probability
 - **Objective:** learn how to reach the goal state in the shortest expected time

Agent navigation example

- The RL model:
 - **Input**: X – a position of an agent
 - **Output**: A – the next move
 - **Reinforcements**: R
 - -1 for each move
 - +100 for reaching the goal
 - A policy: $\pi : X \rightarrow A$
 - Position 1 \rightarrow right
 - Position 2 \rightarrow right
 - ... (omitted)
 - Position 25 \rightarrow left

- Goal: find the policy maximizing future expected rewards
 $$E(\sum_{t=0}^{\infty} \gamma^t r_t) \quad 0 \leq \gamma < 1$$

Agent navigation example

State, action reward trajectories

- policy
 $$\pi : \begin{array}{l}
 \text{Position 1} \rightarrow \text{right} \\
 \text{Position 2} \rightarrow \text{right} \\
 \ldots \\
 \text{Position 25} \rightarrow \text{left}
 \end{array}$$

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos1</td>
<td>Right</td>
<td>-1</td>
</tr>
<tr>
<td>Pos2</td>
<td>Right</td>
<td>-1</td>
</tr>
<tr>
<td>Pos3</td>
<td>Up</td>
<td>-1</td>
</tr>
<tr>
<td>Pos15</td>
<td>Up</td>
<td>-1</td>
</tr>
<tr>
<td>Pos25</td>
<td>Left</td>
<td>-1</td>
</tr>
</tbody>
</table>

Step 0: Pos1 Right -1
Step 1: Pos2 Right -1
Step 2: Pos3 Up -1
Step k: Pos15 Up -1...
Effects of actions on the environment

Effect of actions on the environment
– More specifically on the next input \(x \) to be seen

Case 1. No effect. The distribution over possible \(x \) is independent of past actions. The rewards received depend only on the current state \(x \) and the action \(a \) chosen.

- **Reinforcement learning with immediate rewards**
 – 3 coin example
 What coin we see next is not affected by our previous action, hence our action does not effect future rewards

<table>
<thead>
<tr>
<th>Step</th>
<th>Coin 2</th>
<th>Coin 1</th>
<th>Coin 2</th>
<th>Coin 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Tail</td>
<td>Head</td>
<td>Tail</td>
<td>Head</td>
</tr>
<tr>
<td>Action</td>
<td>Tail</td>
<td>Head</td>
<td>Tail</td>
<td>Head</td>
</tr>
<tr>
<td>Reward</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Effects of actions on the environment

Effect of actions on the environment
– More specifically on the next input \(x \) to be seen

Case 2. Actions may effect the environment and next inputs \(x \). The distribution of \(x \) can change due to past actions; the rewards related to the action can be seen with some delay.

- **Learning with delayed rewards**
 – Agent navigation example; a move action effects next position, and hence more distant future rewards

<table>
<thead>
<tr>
<th>Step</th>
<th>Pos 1</th>
<th>Pos 2</th>
<th>Pos 3</th>
<th>Pos 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Right</td>
<td>Right</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>Action</td>
<td>Right</td>
<td>Right</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>Reward</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
RL with immediate rewards

- **Game:** 3 biased coins
 - The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of $1. If after the coin toss, the outcome agrees with the bet, the agent wins $1, otherwise it loses $1

- **RL model:**
 - Input: \(X \) – a coin chosen for the next toss
 - Action: \(A \) – head or tail the agent bets on
 - Reinforcements: \(\{1, -1\} \) ($1 either won or lost)

- **Learning goal:** find the optimal policy \(\pi^* : X \rightarrow A \) maximizing the future expected profits over time

\[
E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right) \quad 0 \leq \gamma < 1 \quad \text{a discount factor}
\]

RL with immediate rewards

- **Expected reward**
\[
E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right) \quad 0 \leq \gamma < 1
\]

- **Immediate reward case:**
 - Reward depends only on \(x \) and the action choice
 - The action does not affect the environment and hence future inputs (states) and future rewards:

<table>
<thead>
<tr>
<th>General Trajectory</th>
<th>Step0</th>
<th>Step1</th>
<th>Step2</th>
<th>Step k</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>(x_0)</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_k)</td>
</tr>
<tr>
<td>action</td>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>..</td>
</tr>
<tr>
<td>Reward</td>
<td>(r_{x0,a0})</td>
<td>(r_{x1,a1})</td>
<td>(r_{x2,a2})</td>
<td>(r_{xk,ak})</td>
</tr>
</tbody>
</table>

\[
E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right) = E(r_{x0,a0}) + \gamma E(r_{x1,a1}) + \gamma^2 E(r_{x2,a2}) + ... E(\gamma^k r_{xk,ak}) + ... \\
_{
= E(r_{x0,a0}) + \gamma E(r_{x1,a1}) + \gamma^2 E(r_{x2,a2}) + ... \gamma^k E(r_{xk,ak}) + ...
\]
RL with immediate rewards

Immediate reward case:
- Reward for input x and the action choice a may vary
- **Expected one-step reward for the input x and action a:**
 \[R(x, a) = E(r_{x,a}) \]
 - For the coin bet problem it is:
 \[R(x, a_i) = \sum r(\omega_j | a_i, x) P(\omega_j | x, a_i) \]
 ω_j : an outcome of the coin toss x
 $r(\omega_j | a_i, x)$: reward for an outcome and the bet made on x
- **Expected one step reward for a policy** $\pi : X \rightarrow A$
 \[R(x, \pi(x)) = E(r_{x,\pi(x)}) \]

Optimal strategy:
- **Expected reward**
 \[E(\sum_{t=0}^{\infty} \gamma^t r_t) = E(r_{x_0,a_0}) + \gamma E(r_{x_1,a_1}) + \gamma^2 E(r_{x_2,a_2}) + \ldots + E(\gamma^k r_{x_k,a_k}) + \ldots \]
 \[= E(r_{x_0,a_0}) + \gamma E(r_{x_1,a_1}) + \gamma^2 E(r_{x_2,a_2}) + \ldots + \gamma^k E(r_{x_k,a_k}) + \ldots \]
- **Optimizing the expected reward**
 \[\max E(\sum_{t=0}^{\infty} \gamma^t r_t) = \max E(r_{x_0,a_0}) + \gamma \max E(r_{x_1,a_1}) + \ldots + \gamma^k \max E(r_{x_k,a_k}) + \ldots \]
 \[= \max E(r_{x_0,a_0}) + \gamma \max E(r_{x_1,a_1}) + \ldots + \gamma^k \max E(r_{x_k,a_k}) + \ldots \]
 \[= \max_{a_0} R(x_0, a_0) + \gamma \max_{a_1} R(x_1, a_1) + \ldots + \gamma^k \max_{a_k} R(x_k, a_k) + \ldots \]
- **Optimal strategy:** $\pi^*: X \rightarrow A$
 \[\pi^*(x) = \arg \max_a R(x, a) \]
RL with immediate rewards

The optimal choice assumes we know the expected reward \(R(x, a) \)

- **Then:** \(\pi^*(x) = \arg \max_a R(x, a) \)

Caveats
- **We do not know the expected reward** \(R(x, a) \)
 - We need to estimate it using \(\tilde{R}(x, a) \) from interaction
- **We cannot determine the optimal policy if the estimate of the expected reward is not good**
 - We need to try also actions that look suboptimal \(\text{wrt} \) the current estimates of \(\tilde{R}(x, a) \)

RL with immediate rewards

- **Problem:** In the RL framework we do not know \(R(x, a) \)
 - The expected reward for performing action \(a \) at input \(x \)
- **Solution:**
 - For each input \(x \) try different actions \(a \)
 - Estimate \(R(x, a) \) using the average of observed rewards

\[
\tilde{R}(x, a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_{i,x,a}^a
\]

- Action choice \(\pi(x) = \arg \max \tilde{R}(x, a) \)
- Accuracy of the estimate: statistics (Hoeffding’s bound)

\[
P(\left| \tilde{R}(x, a) - R(x, a) \right| \geq \varepsilon) \leq \exp \left[-\frac{2\varepsilon^2 N_{x,a}}{(r_{\max} - r_{\min})^2} \right] \leq \delta
\]

- Number of samples:

\[
N_{x,a} \geq \frac{(r_{\max} - r_{\min})^2}{2\varepsilon^2} \ln \frac{1}{\delta}
\]
RL with immediate rewards

• **On-line (stochastic approximation)**
 – An alternative way to estimate $R(x, a)$

• **Idea:**
 – choose action a for input x and observe a reward $r^{x,a}$
 – Update an estimate in every step i

$$
\tilde{R}(x, a)^{(i)} \leftarrow (1 - \alpha(i))\tilde{R}(x, a)^{(i-1)} + \alpha(i) r^{x,a}_i \ \
\alpha(i) - a learning rate
$$

• **Convergence property:** The approximation converges in the limit for an appropriate learning rate schedule.
• Assume: $\alpha(n(x, a))$ - is a learning rate for nth trial of (x, a) pair
• Then the converge is assured if:
 1. $\sum_{i=1}^{\infty} \alpha(i) = \infty$
 2. $\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$

RL with immediate rewards

• At any step in time i during the experiment we have estimates of expected rewards for each $(coin, action)$ pair:
 $\tilde{R}(coin1, head)^{(i)}$
 $\tilde{R}(coin1, tail)^{(i)}$
 $\tilde{R}(coin2, head)^{(i)}$
 $\tilde{R}(coin2, tail)^{(i)}$
 $\tilde{R}(coin3, head)^{(i)}$
 $\tilde{R}(coin3, tail)^{(i)}$

• Assume the next coin to play in step $(i+1)$ is coin 2 and we pick head as our bet. Then we update $\tilde{R}(coin2, head)^{(i+1)}$ using the observed reward and one of the update strategy above, and keep the reward estimates for the remaining (coin, action) pairs unchanged, e.g. $\tilde{R}(coin2, tail)^{(i+1)} = \tilde{R}(coin2, tail)^{(i)}$
Exploration vs. Exploitation in RL

The learner actively interacts with the environment via actions:

- At the beginning the learner does not know anything about the environment
- It gradually gains the experience and learns how to react to the environment

Dilemma (exploration-exploitation):

- After some number of steps, should I select the best current choice (exploitation) or try to learn more about the environment (exploration)?
- **Exploitation** may involve the selection of a sub-optimal action and prevent the learning of the optimal choice
- **Exploration** may spend too much time on trying bad currently suboptimal actions

Exploration vs. Exploitation

- In the RL framework
 - the learner actively interacts with the environment and **chooses the action** to play for the current input \(x \)
 - Also at any point in time it has an estimate of \(\hat{R}(x, a) \) for any \((input, action) \) pair
- **Dilemma for choosing the action to play for** \(x \):
 - Should the learner choose the current best choice of action (exploitation)
 \[
 \hat{\pi}(x) = \arg \max_{a \in A} \hat{R}(x, a)
 \]
 - Or choose some other action \(a \) which may help to improve its \(\hat{R}(x, a) \) estimate (exploration)
This dilemma is called **exploration/exploitation dilemma**
- **Different exploration/exploitation strategies exist**
Exploration vs. Exploitation

- **Uniform exploration:**
 - Uses exploration parameter $0 \leq \varepsilon \leq 1$
 - Choose the “current” best choice with probability $1 - \varepsilon$

 \[\hat{r}(x) = \arg \max_{a \in A} \tilde{R}(x, a) \]

 - All other choices are selected with a uniform probability $\varepsilon / |A| - 1$

Advantages:
- Simple, easy to implement

Disadvantages:
- Exploration more appropriate at the beginning when we do not have good estimates of $\tilde{R}(x, a)$
- Exploitation more appropriate later when we have good estimates

Exploration vs. Exploitation

- **Boltzmann exploration**
 - The action is chosen randomly but proportionally to its current expected reward estimate
 - Can be tuned with a temperature parameter T to promote exploration or exploitation

 - Probability of choosing action a

 \[p(a \mid x) = \frac{\exp[\tilde{R}(x, a) / T]}{\sum_{a' \in A} \exp[\tilde{R}(x, a') / T]} \]

- **Effect of T:**
 - For high values of T, $p(a \mid x)$ is uniformly distributed for all actions
 - For low values of T, $p(a \mid x)$ of the action with the highest value of $\tilde{R}(x, a)$ is approaching 1