Dimensionality reduction. Motivation.

- ML methods are sensitive to the dimensionality d of data
- **Question:** Is there a lower dimensional representation of the data that captures well its characteristics?
- **Objective of dimensionality reduction:**
 - Find a lower dimensional representation of data
- **Two learning problems:**
 - **Supervised**
 \[D = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \} \]
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \]
 - **Unsupervised**
 \[D = \{ x_1, x_2, \ldots, x_n \} \]
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \]
- **Goal:** replace $x_i = (x_i^1, x_i^2, \ldots, x_i^d)$ with x_i' of dimensionality $d' < d$
Dimensionality reduction

- **Solutions:**
 - **Selection of a smaller subset** of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - **Combination of high dimensional inputs** to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features

Task-dependent feature selection

Assume: Classification problem:
- \mathbf{x} – input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities

Selection approaches:
- **Filtering approaches**
 - Filter out features with small predictive potential
 - Done before classification; typically uses univariate analysis
- **Wrapper approaches**
 - Select features that directly optimize the accuracy of the multivariate classifier
- **Embedded methods**
 - Feature selection and learning closely tied in the method
 - Regularization methods, decision tree methods
Feature selection through filtering

Assume: Classification problem: \(x \) – input vector, \(y \) - output

How to select the features/inputs?

- **Step 1.** For each input \(x_i \) in data calculate \(\text{Score}(x_i, y) \) reflecting how well \(x_i \) predicts the output \(y \) alone
- **Step 2.** Pick a subset of inputs with the best scores \(\text{Score}(x_i, y) \) (or equivalently eliminate/filter the inputs with the worst scores)

Feature scoring for classification

- **Scores for measuring the differential expression**
 - T-Test score (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Null hypothesis: is mean of class 0 = mean of class 1

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_{100})</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>0.2</td>
<td>9.3</td>
<td>1</td>
</tr>
<tr>
<td>7.5</td>
<td>3.7</td>
<td>8.6</td>
<td>2.1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{Score}(x_1, y) \) \(\text{Score}(x_2, y) \) \(\text{Score}(x_{100}, y) \)

Class 0 \hspace{1cm} Class 1
Feature scoring for classification

Scores for measuring the differential expression

• Fisher Score

\[
Fisher(i) = \frac{(\mu_i^{(+)}) - (\mu_i^{(-)})^2}{\sigma_i^{(+)^2} + \sigma_i^{(-)^2}}
\]

- AUROC score: Area under Receiver Operating Characteristic curve

Feature scoring

• Correlation coefficients
 – Measures linear dependences
 \[
 \rho(x_k, y) = \frac{Cov(x_k, y)}{\sqrt{Var(x_k)Var(y)}}
 \]

• Mutual information
 – Measures dependences
 – Needs discretized input values

\[
I(x_k, y) = \sum_{i} \sum_{j} \tilde{P}(x_k = j, y = i) \log_2 \frac{\tilde{P}(x_k = j, y = i)}{\tilde{P}(x_k = j)\tilde{P}(y = i)}
\]
Feature/input dependences

Univariate score assumptions:

- Only one input and its effect on y is incorporated in the score
- Effects of two features on y are considered to be independent

Correlation based feature selection

- A partial solution to the above problem
- **Idea:** good feature subsets contain features that are highly correlated with the class but independent of each other
- **Assume a set of features S of size d. Then**

$$M(S) = \frac{d\bar{r}_{xx}}{\sqrt{d + d(d + 1)\bar{r}_{xx}}}$$

- Average correlation between x and class y \bar{r}_{yx}
- Average correlation between pairs of xs \bar{r}_{xx}

Feature selection: low sample size

Problems: Many inputs and low sample size

- if many random features, and not many instances we can learn from, the features with a good predictive score may arise simply by chance. The probability of this can be quite large.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>$x_{10,000}$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>0.2</td>
<td>9.3</td>
<td>1</td>
</tr>
<tr>
<td>7.5</td>
<td>3.7</td>
<td>8.6</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>1.3</td>
<td>2.6</td>
<td>6.5</td>
<td>7.5</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Techniques to address the problem:**
 - reduce **FDR** (False discovery rate) and
 - **FWER** (Family wise error)

Many high $Score(x_i, y)$ arise by chance
Feature selection: wrappers

Wrapper approach:
• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to build

Two problems:
How to judge the quality of a subset of inputs on the model?
How to find the best subset of inputs out of d inputs efficiently?

Feature selection: wrappers

Wrapper approach:
• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to build

Two problems:
How to judge the quality of a subset of inputs on the model?
• Internal cross-validation (k-fold cross validation)
Internal cross-validation

- **Split train set:** to internal train and test sets
- **Internal train set:** train different models (defined e.g. on different subsets of features)
- **Internal test set/s:** estimate the generalization error and select the best model among possible models
- **Internal cross-validation (k-fold):**
 - Divide the train data into \(m \) equal partitions (of size \(N/k \))
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

Wrapper approach:
- The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

Two problems:
How to judge the quality of a subset of inputs on the model?
- Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

\[\text{d inputs} \]
Feature selection: wrappers

Wrapper approach:
• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to build.

Two problems:
How to judge the quality of a subset of inputs on the model?
• Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

For d inputs/features there are 2^d different input subsets to evaluate and compare

Feature selection: wrappers

How to find the appropriate feature subset S efficiently?
• For d inputs/features there are 2^d different feature subsets

• Solution: Greedy search in the space of classifiers
 – Option 1: Build the set incrementally
 • Add features one by one. Add features that improve the quality of the model the most
 – Option 2: Gradually remove features
 • Remove features that effect the accuracy the least

• Model quality:
 – Internal cross-validation (k-fold cross validation)
Feature selection: wrappers

Greedy selection

<table>
<thead>
<tr>
<th>Level 1</th>
<th>({x_1})</th>
<th>({x_2})</th>
<th>({x_3})</th>
<th>(\ldots)</th>
<th>({x_{100}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_{{x_1}})</td>
<td>(M_{{x_2}})</td>
<td>(M_{{x_3}})</td>
<td>(\ldots)</td>
<td>(M_{{x_{100}}})</td>
</tr>
<tr>
<td>selected</td>
<td>({x_2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e(M_{{x_1}}))</td>
<td>(e(M_{{x_2}}))</td>
<td>(e(M_{{x_3}}))</td>
<td>(\ldots)</td>
<td>(e(M_{{x_{100}}}))</td>
<td></td>
</tr>
<tr>
<td>Best score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2</th>
<th>({x_2, x_1})</th>
<th>({x_2, x_3})</th>
<th>(\ldots)</th>
<th>({x_2, x_{100}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_{{x_2, x_1}})</td>
<td>(M_{{x_2, x_3}})</td>
<td>(\ldots)</td>
<td>(M_{{x_2, x_{100}}})</td>
</tr>
<tr>
<td>selected</td>
<td>({x_2, x_3})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e(M_{{x_2, x_1}}))</td>
<td>(e(M_{{x_2, x_3}}))</td>
<td>(\ldots)</td>
<td>(e(M_{{x_2, x_{100}}}))</td>
<td></td>
</tr>
<tr>
<td>Best score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 3</th>
<th>({x_2, x_3, x_1})</th>
<th>(\ldots)</th>
<th>({x_2, x_3, x_{100}})</th>
</tr>
</thead>
</table>

Feature selection: wrappers

Stopping criterion:

- Compare:
 - The best score at the previous level k-1
 - The best score at the current level k
- Stop when there is a decrease in performance on the set of features at level k
Embedded methods

Feature selection + model learning done jointly

- Examples of embedded methods:
 - **Regularized models**
 - Models of higher complexity are explicitly penalized leading to ‘virtual’ removal of inputs from the model
 - **Covers:**
 - Regularized logistic/linear regression
 - Support vector machines
 - Optimization of margins penalizes nonzero weights
 - **CART/Decision trees**

Unsupervised dimensionality reduction

- **Is there a lower dimensional representation of the data that captures well its characteristics?**
- **Assume:**
 - We have data $D = \{x_1, x_2, \ldots, x_N\}$ such that
 $x_i = (x_i^1, x_i^2, \ldots, x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x, there is no class label y
- **Our goal:**
 - Find a lower dimensional representation of data of dimension $d' < d$
Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector with a lower dimension vector (obtained by combining inputs)
- Different from the feature subset selection !!!

PCA:
- A linear transformation of the d dimensional input x to the M dimensional feature vector z such that $M < d$

 $$z = Ax$$

- Many different transformations exists, which one to pick?
- PCA –selects the linear transformation for which the **retained variance is maximal**
- Or, equivalently it is the linear transformation for which the sum of squares reconstruction cost is minimized

PCA: example
PCA

Projections to different axis

- PCA projection to the 2 dimensional space
PCA

- PCA projection to the 2 dimensional space

\[\begin{align*}
X_{prim} &= 0.04x + 0.06y - 0.99z \\
Y_{prim} &= 0.70x + 0.70y + 0.07z
\end{align*} \]

97% variance retained

Principal component analysis (PCA)

- **PCA:**
 - linear transformation of a \(d \) dimensional input \(x \) to \(M \) dimensional vector \(z \) such that \(M < d \) under which the retained variance is maximal. **Remember:** no \(y \) is needed

- **Fact:**
 - A vector \(x \) can be represented using a set of orthonormal vectors \(u \) (basis vectors)
 \[x = \sum_{i=1}^{d} z_i u_i \]
 - Leads to transformation of coordinates (from \(x \) to \(z \) using \(u \)'s)
 \[z_i = u_i^T x \quad z = Ux \]

\[U = \begin{bmatrix}
 u_1^T \\
 u_2^T \\
 \vdots \\
 u_d^T
\end{bmatrix} \]
Principal component analysis (PCA)

- **Fact:** A vector \(\mathbf{x} \) can be represented using a set of orthonormal vectors \(\mathbf{u} \) (basis vectors)
 \[
 \mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i
 \]
 - Leads to transformation of coordinates
 (from \(\mathbf{x} \) to \(\mathbf{z} \) using \(\mathbf{u} \)'s)
 \[
 z_i = \mathbf{u}_i^T \mathbf{x}
 \]
 \[
 \mathbf{z} = \mathbf{U} \mathbf{x}
 \]
 \[
 \mathbf{U} = \begin{bmatrix}
 \mathbf{u}_1^T \\
 \mathbf{u}_2^T \\
 \vdots \\
 \mathbf{u}_d^T
 \end{bmatrix}
 \]

 Standard bases:
 \((1,0,0); (0,1,0); (0,0,1)\)

 New bases: \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \)

PCA

- **Idea:** represent \(d\)-dimensional \(\mathbf{x}'' \) with an \(M\)-dimensional \(\mathbf{z}'' \) formed by subset of \(z_i \) coordinates for the bases defined by \(\mathbf{U} \).

 \[
 \begin{bmatrix}
 \mathbf{u}_1 \\
 \mathbf{u}_2 \\
 \vdots \\
 \mathbf{u}_M
 \end{bmatrix}
 \]

 Keep \(M \) components only

 \[
 \mathbf{u}'' = \sum_{i=1}^{M} z_i'' \mathbf{u}_i
 \]

 \[
 \mathbf{X}'' = \sum_{i=1}^{M} z_i'' \mathbf{u}_i + \sum_{i=M+1}^{d} b_i \mathbf{u}_i
 \]

- **Goal:** We want to find:
 (1) Basis vectors \(\mathbf{U} \) and (2) a subset of basis of size \(M \) to keep

- **This effectively replaces** \(\mathbf{x}'' \) with its approximation \(\mathbf{x}'' \)

 \[
 b_i - \text{constant and fixed for all data-points}
 \]
PCA

- **Goal:** We want to find: z_i

 Basis vectors U and a subset of basis of size M to keep

 \[x^n = \sum_{i=1}^{d} z_i^n u_i \rightarrow \tilde{x}^n = \sum_{i=1}^{M} z_i^n u_i + \sum_{i=M+1}^{d} b_i u_i \]

 b_i - constant and fixed for all data-points

- **How to choose the best set of basis vectors?**
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

 Error for data entry x^n : $x^n - \tilde{x}^n = \sum_{i=M+1}^{d} (z_i^n - b_i) u_i$

 Reconstruction error

 \[E_M = \frac{1}{2} \sum_{n=1}^{N} \left\| x^n - \tilde{x}^n \right\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_i^n - b_i)^2 \]

 Differentiate the error function with regard to all b_i and set equal to 0 we get:

 \[b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = u_i^T \bar{x} \]

 $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n$

 - Then we can rewrite:

 \[E_M = \frac{1}{2} \sum_{i=M+1}^{d} u_i^T \Sigma u_i \]

 $\Sigma = \sum_{n=1}^{N} (x^n - \bar{x})(x^n - \bar{x})^T$

 - The error function is optimized when basis vectors satisfy:

 \[\Sigma u_i = \lambda_i u_i \]

 The best M basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)

 Eigenvector u_i – is called a **principal component**
PCA

- Once eigenvectors \mathbf{u}, with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions.

$$x_2$$

$$x_1$$

- To find the “true” dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded).

- **Problem:** PCA is a linear method. The “true” dimensionality can be overestimated. There can be non-linear correlations.

- **Modifications for nonlinearities:** kernel PCA

Dimensionality reduction with neural nets

- **PCA** is limited to linear dimensionality reduction.
- To do non-linear reductions we can use neural nets.

- **Auto-associative (or auto-encoder) network:** a neural network with the same inputs and outputs (\mathbf{x})

$$\mathbf{z} = (z_1, z_2)$$

- The middle layer corresponds to the reduced dimensions.
Dimensionality reduction with neural nets

- Error criterion:
 \[E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_j^i(x^n) - x^n)^2 \]

- Error measure tries to recover the original data through limited number of dimensions in the middle layer

- Non-linearities modeled through intermediate layers between the middle layer and input/output

- If no intermediate layers are used the model replicates PCA optimization through learning

Latent variable models

- Learning using unsupervised learning
- Dimensionality reduction via inference

Latent variables (s): Dimensionality k

Observed variables x: real valued vars Dimensionality d