Linear models for classification

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Discriminant functions

• A common way to represent a classifier is by using
 – Discriminant functions
• Works for both the binary and multi-way classification
• Idea:
 – For every class $i = 0, 1, ...k$ define a function $g_i(x)$
 mapping $X \rightarrow \mathbb{R}$
 – When the decision on input x should be made choose the class with the highest value of $g_i(x)$

$y^* = \arg \max_i g_i(x)$
Logistic regression model

- **Discriminant functions:**
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]
- Values of discriminant functions vary in interval [0,1]
 - **Probabilistic interpretation**
 \[f(x, w) = p(y = 1 \mid w, x) = g_1(x) = g(w^T x) \]

Logistic function

Function:
\[g(z) = \frac{1}{1 + e^{-z}} \]

- Is also referred to as a *sigmoid function*
- Takes a real number and outputs the number in the interval [0,1]
- Models a smooth switching function; replaces hard threshold function

Logistic (smooth) switching

Threshold (hard) switching
Logistic regression model. Decision boundary

- LR defines a linear decision boundary

Example: 2 classes (blue and red points)

\[
D \leftarrow w^T x = 0
\]

Logistic regression: parameter learning

- **Notation:**
 \[\mu_i = p(y_i = 1 | x_i, w) = g(z_i) = g(w^T x_i) \]
- **Log likelihood**
 \[
 l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log (1 - \mu_i)
 \]
- **Derivatives of the loglikelihood**
 \[
 \frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} x_{i,j} (y_i - g(z_i))
 \]
 \[
 \nabla_w l(D, w) = \sum_{i=1}^{n} x_i (y_i - f(w, x_i)) = \sum_{i=1}^{n} x_i (y_i - f(w, x_i))
 \]
- **Gradient descent:**
 \[
 w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [-l(D, w)] \Big|_{w^{(k-1)}}
 \]
 \[
 w^{(k)} \leftarrow w^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(w^{(k-1)}, x_i)] x_i
 \]
Logistic regression. Online gradient descent

- **On-line component of the loglikelihood**
 \[J_{\text{online}}(D, \mathbf{w}) = -\left[y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right] \]

- **On-line learning update for weight \(\mathbf{w} \)**
 \[J_{\text{online}}(D_k, \mathbf{w}) \]
 \[\mathbf{w}^{(k)} \leftarrow \mathbf{w}^{(k-1)} - \alpha(k) \nabla_{\mathbf{w}} [J_{\text{online}}(D_k, \mathbf{w})]_{\mathbf{w}^{(k-1)}} \]

- **ith update for the logistic regression** and \(D_k = \langle \mathbf{x}_k, y_k \rangle \)
 \[\mathbf{w}^{(k)} \leftarrow \mathbf{w}^{(k-1)} + \alpha(k) [y_i - f(\mathbf{w}^{(k-1)}, \mathbf{x}_k)] \mathbf{x}_k \]

When does the logistic regression fail?

- **Nonlinear decision boundary**
When does the logistic regression fail?

- Another example of a non-linear decision boundary

Non-linear extension of logistic regression

- use feature (basis) functions to model nonlinearities
- the same trick as used for the linear regression

Linear regression

\[f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}) \]

Logistic regression

\[p(y = 1 | \mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})) \]

\(\phi_j(\mathbf{x}) \) - an arbitrary function of \(\mathbf{x} \)
Regularized logistic regression

- If the model is too complex and can cause overfitting, its prediction accuracy can be improved by removing some inputs from the model = setting their coefficients to zero
- We can apply the same idea to the logistic regression:

\[p(y=1|x) = g(w^T x) \]

\[w_0, w_1, \ldots, w_k \] - parameters (weights)

\[p(y=1|x) = g(w_0 x_0 + (w_1 x_1 + w_2 x_2 + w_3 x_3 + \ldots + w_d x_d)) = g(w^T x) \]

Ridge (L2) penalty

Linear regression – Ridge penalty:

\[J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|w\|_{L2}^2 \]

Fit to data Model complexity penalty

\[\|w\|_{L2}^2 = \sum_{i=0}^{d} w_i^2 = w^T w \]

and \(\lambda \geq 0 \)

Logistic regression:

\[J_n(w) = -\log P(D | w) + \lambda \|w\|_{L2}^2 \]

Fit to data Model complexity penalty

\[J_n(w) = -\left[\sum_{i=1}^{n} y_i \log g(w^T x_i) + (1 - y_i) \log (1 - g(w^T x_i)) \right] + \lambda \|w\|_{L2} \]

Fit to data measured using the negative log likelihood
Lasso (L1) penalty

Linear regression – Lasso penalty:

\[
J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|w\|_{L1}
\]

Fit to data \hspace{2cm} Model complexity penalty

\[\|w\|_{L1} = \sum_{i=0}^{d} |w_i| \quad \text{and} \quad \lambda \geq 0\]

Logistic regression:

\[
J_n(w) = -\log P(D | w) + \lambda \|w\|_{L1}
\]

Fit to data \hspace{2cm} Model complexity penalty

\[J_n(w) = -\left[\sum_{i=1}^{n} y_i \log g(w^T x_i) + (1 - y_i) \log (1 - g(w^T x_i))\right] + \lambda \|w\|_{L1}\]

Fit to data measured using the negative log likelihood

Generative approach to classification

Logistic regression:

- Represents and learns a model of \(p(y | x)\)
- An example of a **discriminative classification approach**
- Model is **unable** to sample (generate) data instances \((x, y)\)

Generative approach:

- Represents and learns a joint distribution \(p(x, y)\)
- Model is **able** to sample (generate) data instances \((x, y)\)
- The joint model defines probabilistic discriminant functions

How?

\[
g_1(x) = p(y = 1 | x) = \frac{p(x, y = 1)}{p(x)} = \frac{p(x | y = 1) p(y = 1)}{p(x)}
\]

\[
g_0(x) = p(y = 0 | x) = \frac{p(x, y = 0)}{p(x)} = \frac{p(x | y = 0) p(y = 0)}{p(x)}
\]

\[p(y = 0 | x) + p(y = 1 | x) = 1\]
Generative approach to classification

Typical joint model \(p(x, y) = p(x \mid y) p(y) \)

- \(p(x \mid y) = \text{Class-conditional distributions (densities)} \)
 - Binary classification: two class-conditional distributions
 \[p(x \mid y = 0) \quad p(x \mid y = 1) \]
- \(p(y) = \text{Priors on classes} \)
 - Probability of class \(y \)
 - For binary classification: Bernoulli distribution
 \[p(y = 0) + p(y = 1) = 1 \]

Quadratic discriminant analysis (QDA)

Model:

- **Class-conditional distributions are**
 - Multivariate normal distributions
 \[x \sim N(\mu_0, \Sigma_0) \] for \(y = 0 \)
 \[x \sim N(\mu_1, \Sigma_1) \] for \(y = 1 \)
- Multivariate normal \(x \sim N(\mu, \Sigma) \)

\[
p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
\]

- **Priors on classes (class 0,1)** \(y \sim \text{Bernoulli} \)
 - Bernoulli distribution
 \[p(y, \theta) = \theta^y (1 - \theta)^{1-y} \quad y \in \{0,1\} \]
Learning of parameters of the QDA model

Density estimation in statistics
- We see examples – we do not know the parameters of Gaussians (class-conditional densities)

\[p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right] \]

- ML estimate of parameters of a multivariate normal \(N(\mu, \Sigma) \) for a set of \(n \) examples of \(x \)
 Optimize log-likelihood: \(l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i \mid \mu, \Sigma) \)

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]

- How about class priors?

Learning Quadratic discriminant analysis (QDA)

- Learning Class-conditional distributions
 - Learn parameters of 2 multivariate normal distributions
 \[x \sim N(\mu_0, \Sigma_0) \quad \text{for} \quad y = 0 \]
 \[x \sim N(\mu_1, \Sigma_1) \quad \text{for} \quad y = 1 \]
 - Use the density estimation methods

- Learning Priors on classes (class 0,1)
 - \(y \sim Bernoulli \)
 - Learn the parameter of the Bernoulli distribution
 - Again use the density estimation methods

\[p(y, \theta) = \theta^y (1 - \theta)^{1-y} \quad y \in \{0,1\} \]
QDA

2 Gaussian class-conditional densities
QDA: Making class decision

Basically we need to design discriminant functions

- **Posterior of a class** – choose the class with better posterior probability

\[
p(y = 1 \mid \mathbf{x}) > p(y = 0 \mid \mathbf{x}) \quad \text{then} \quad y = 1
\]

\[
p(y = 0 \mid \mathbf{x}) \quad \text{else} \quad y = 0
\]

\[
p(y = 1 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y = 1)}{p(\mathbf{x} \mid \mu_0, \Sigma_0) p(y = 0) + p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y = 1)}
\]

- **Notice it is sufficient to compare:**

\[
p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y = 1) > p(\mathbf{x} \mid \mu_0, \Sigma_0) p(y = 0)
\]

QDA: Quadratic decision boundary

Contours of class-conditional densities

QDA: Quadratic decision boundary

Linear discriminant analysis (LDA)
• Assumes covariances are the same
 \[x \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[x \sim N(\mu_1, \Sigma), \ y = 1 \]
LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary
Generative classification models

Idea:
1. Represent and learn the distribution \(p(x, y) \)
2. Model is able to sample (generate) data instances \((x, y)\)
3. The model is used to get probabilistic discriminant functions \(g_o(x) = p(y = 0 | x) \quad g_1(x) = p(y = 1 | x) \)

Typical model \(p(x, y) = p(x | y) p(y) \)

- \(p(x \mid y) \) = Class-conditional distributions (densities)
 - binary classification: two class-conditional distributions
 \[p(x \mid y = 0) \quad p(x \mid y = 1) \]
- \(p(y) \) = Priors on classes - probability of class \(y \)
 - binary classification: Bernoulli distribution
 \[p(y = 0) + p(y = 1) = 1 \]

Naïve Bayes classifier

A generative classifier model with an additional simplifying assumption:
- All input attributes are conditionally independent of each other given the class.
- One of the basic ML classification models (often performs very well in practice)

 So we have:
 \[p(x, y) = p(x \mid y) p(y) \]
 \[p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y) \]
Learning parameters of the model

Much simpler density estimation problems
• We need to learn:
 \[p(x \mid y = 0) \quad \text{and} \quad p(x \mid y = 1) \quad \text{and} \quad p(y) \]
• Because of the assumption of the conditional independence we need to learn:
 for every input variable i: \(p(x_i \mid y = 0) \) and \(p(x_i \mid y = 1) \)
• Much easier if the number of input attributes is large
• Also, the model gives us a flexibility to represent input attributes of different forms !!!
• E.g. one attribute can be modeled using the Bernoulli, the other using Gaussian density, or a Poisson distribution

Making a class decision for the Naïve Bayes

Discriminant functions
• **Posterior of a class** – choose the class with better posterior probability

\[
p(y = 1 \mid x) > p(y = 0 \mid x) \quad \text{then} \quad y = 1 \\
\text{else} \quad y = 0
\]

\[
p(y = 1 \mid x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1i}) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2i}) \right) p(y = 1)}
\]
Next: two interesting questions

(1) Two probabilistic models with linear decision boundaries:
 - Logistic regression
 - LDA model (2 Gaussians with the same covariance matrices)
 \[x \sim N(\mu_0, \Sigma) \text{ for } y = 0 \]
 \[x \sim N(\mu_1, \Sigma) \text{ for } y = 1 \]
 - Question: Is there any relation between the two models?

(2) Two models with the same gradient:
 - Linear model for regression
 - Logistic regression model for classification
 have the same gradient update
 \[\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(x_i)) \mathbf{x}_i \]
 - Question: Why is the gradient the same?

Logistic regression and generative models

- Two models with linear decision boundaries:
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices
 \[x \sim N(\mu_0, \Sigma) \text{ for } y = 0 \]
 \[x \sim N(\mu_1, \Sigma) \text{ for } y = 1 \]
 - Question: Is there any relation between the two models?
 - Answer: Yes, the two models are related !!!
 - When we have 2 Gaussians with the same covariance matrix the probability of \(y \) given \(x \) has the form of a logistic regression model !!!

\[
p(y = 1 | x, \mu_0, \mu_1, \Sigma) = g(w^T x)
\]
Logistic regression and generative models

- Members of the exponential family can be often more naturally described as

\[f(x \mid \theta, \phi) = h(x, \phi) \exp \left\{ \theta^T x - A(\theta) \right\} \frac{1}{\alpha(\phi)} \]

\(\theta \) - A location parameter \(\phi \) - A scale parameter

- **Claim:** A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor \(\Phi \)

- Very powerful result !!!!
 - We can represent posteriors of many distributions with the same small logistic regression model

The gradient puzzle …

Linear regression

\[f(x) = w^T x \]

Gradient update:

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i))x_i \]

Online:

\[w \leftarrow w + \alpha (y - f(x))x \]

Logistic regression

\[f(x) = p(y=1 \mid x, w) = g(w^T x) \]

Gradient update:

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i))x_i \]

Online:

\[w \leftarrow w + \alpha (y - f(x))x \]

The same
The gradient puzzle …

• The **same simple gradient update rule** derived for both the linear and logistic regression models

• Where the magic comes from?

• Under the **log-likelihood** measure the function models and the models for the output selection fit together:

 - **Linear model + Gaussian noise**

 \[y = \mathbf{w}^{T}\mathbf{x} + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]

 - **Logistic + Bernoulli**

 \[y = \text{Bernoulli}(\theta) \]

 \[\theta = p(y = 1 | \mathbf{x}) = g(\mathbf{w}^{T}\mathbf{x}) \]

Generalized linear models (GLIMs)

Assumptions:

• The conditional mean (expectation) is:

 \[\mu = f(\mathbf{w}^{T}\mathbf{x}) \]

 Where \(f(.) \) is a **response function**

• Output \(y \) is characterized by an exponential family distribution with a conditional mean \(\mu \)

Examples:

- **Linear model + Gaussian noise**

 \[y = \mathbf{w}^{T}\mathbf{x} + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]

- **Logistic + Bernoulli**

 \[y \approx \text{Bernoulli}(\theta) \]

 \[\theta = g(\mathbf{w}^{T}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}} \]
Generalized linear models (GLIMs)

- A canonical response function $f(.)$:
 - encoded in the sampling distribution

$$p(x | \theta, \varphi) = h(x, \varphi) \exp \left\{ \frac{\theta^T x - A(\theta)}{\alpha(\varphi)} \right\}$$

- Leads to a simple gradient form

- Example: Bernoulli distribution

$$p(x | \mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ \log \left(\frac{\mu}{1 - \mu} \right) x + \log(1 - \mu) \right\}$$

$$\theta = \log \left(\frac{\mu}{1 - \mu} \right) \quad \mu = \frac{1}{1 + e^{-\theta}}$$

- Logistic function matches the Bernoulli

Evaluation of classifiers
Classification model learning

Learning:
• Many different ways and objective criteria used to learn the classification models. Examples:
 – Mean squared errors to learn the discriminant functions
 – Negative log likelihood (logistic regression)

Evaluation:
• One possibility: Use the same error criteria as used during the learning (apply to train & test data). Problems:
 – May work for discriminative models
 – Harder to interpret for humans.
• Question: how to more naturally evaluate the classifier performance?

Evaluation of classification models

For any data set we use to test the classification model on we can build a confusion matrix:
– Counts of examples with:
 – class label ω_j that are classified with a label α_i

<table>
<thead>
<tr>
<th>predict</th>
<th>target $\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>
Evaluation of classification models

Confusion matrix entries are often normalized with respect to the number of examples N to get proportions of the different agreements and disagreements among predicted and target values.

<table>
<thead>
<tr>
<th>target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140/231</td>
<td>17/231</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20/231</td>
<td>54/231</td>
</tr>
</tbody>
</table>

Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

<table>
<thead>
<tr>
<th>target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>

Classification Accuracy $= \frac{194}{231}$
Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>$\alpha = 1$</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>$\alpha = 0$</td>
<td>20</td>
</tr>
</tbody>
</table>

Classification Accuracy = $\frac{194}{231}$

Misclassification Error = $\frac{37}{231} = 1 - \text{Accuracy}$

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>$\alpha = 1$</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>$\alpha = 0$</td>
<td>FN</td>
</tr>
</tbody>
</table>

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)
Additional statistics

- **Sensitivity (recall)**

 \[
 SENS = \frac{TP}{TP + FN}
 \]

- **Specificity**

 \[
 SPEC = \frac{TN}{TN + FP}
 \]

- **Positive predictive value (precision)**

 \[
 PPT = \frac{TP}{TP + FP}
 \]

- **Negative predictive value**

 \[
 NPV = \frac{TN}{TN + FN}
 \]

Binary classification: additional statistics

- **Confusion matrix**

<table>
<thead>
<tr>
<th>predict</th>
<th>target</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>10</td>
<td>(PPV = 140/150)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>180</td>
<td>(NPV = 180/200)</td>
<td></td>
</tr>
</tbody>
</table>

Row and column quantities:
- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)
Binary classification models

Often project data points to one dimensional space:

Defined for example by: \(w^T x + w_0 \) or \(p(y=1|x, w) \)
Binary classification models

Often project data points to one dimensional space:

Defined for example by: $w^T x + w_0$ or $p(y=1|x,w)$

![Image](image_url)

Question: how good is the model with parameters w in terms of class discriminability at different decision thresholds?

Receiver Operating Characteristic (ROC)

- **Probabilities:**
 - $SENS$
 - $SPEC$

 $p(x > x^* | x \in \omega_2)$
 $p(x < x^* | x \in \omega_1)$
Receiver Operating Characteristic (ROC)

- ROC curve plots:

 \[SN = p(x > x^* | x \in \omega_2) \]

 \[1 - SP = p(x > x^* | x \in \omega_1) \]

 for different \(x^* \)

Case 1

Case 2

Case 3
Receiver operating characteristic

- **ROC**
 - shows the discriminability between the two classes under different thresholds representing different decision biases
- **Decision bias**
 - can be changed using the different loss function

- **Quality of a classification model:**
 - Area under the ROC
 - Best value 1, worst (no discriminability): 0.5