Logistic regression model

- Defines a linear decision boundary
- Discriminant functions:
 \[g_1(x) = g(w^T x) \quad \text{and} \quad g_0(x) = 1 - g(w^T x) \]
- where \(g(z) = 1/(1 + e^{-z}) \) - is a logistic function

\[f(x, w) = g_1(w^T x) = g(w^T x) \]
Logistic regression model. Decision boundary

- **LR defines a linear decision boundary**

 Example: 2 classes (blue and red points)

Logistic regression: parameter learning

- **Log likelihood**

 \[
 l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log (1 - \mu_i)
 \]

- **Derivatives of the loglikelihood**

 \[
 \frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} -x_{i,j} (y_i - g(z_i))
 \]

 Nonlinear in weights !!

 \[
 \nabla_w l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i))
 \]

- **Gradient descent:**

 \[
 w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [l(D, w)]_{w^{(k-1)}}
 \]

 \[
 w^{(k)} \leftarrow w^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(w^{(k-1)}, x_i)] x_i
 \]
Generative approach to classification

Idea:
1. Represent and learn the distribution \(p(x, y) \)
2. Use it to define probabilistic discriminant functions

E.g. \(g_0(x) = p(y = 0 \mid x) \quad g_1(x) = p(y = 1 \mid x) \)

Typical model \(p(x, y) = p(x \mid y) p(y) \)
- \(p(x \mid y) = \text{Class-conditional distributions (densities)} \)
 - binary classification: two class-conditional distributions
 \[
 p(x \mid y = 0) \quad p(x \mid y = 1)
 \]
- \(p(y) = \text{Priors on classes} \) - probability of class \(y \)
 - binary classification: Bernoulli distribution
 \[
 p(y = 0) + p(y = 1) = 1
 \]

Quadratic discriminant analysis (QDA)

Model:
- Class-conditional distributions
 - multivariate normal distributions
 \[
 x \sim N(\mu_0, \Sigma_0) \quad \text{for} \quad y = 0 \\
 x \sim N(\mu_1, \Sigma_1) \quad \text{for} \quad y = 1
 \]
 - Multivariate normal \(x \sim N(\mu, \Sigma) \)
 \[
 p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
 \]
- Priors on classes (class 0,1)
 - Bernoulli distribution
 \[
 p(y, \theta) = \theta^y (1 - \theta)^{1-y} \quad y \in \{0,1\}
 \]
QDA

2 Gaussian class-conditional densities
QDA: Making class decision

Basically we need to design discriminant functions

Two possible choices:

- **Likelihood of data** – choose the class (Gaussian) that explains the input data \((x) \) better (likelihood of the data)
 \[
 \frac{p(x \mid \mu_1, \Sigma_1)}{g_1(x)} > \frac{p(x \mid \mu_2, \Sigma_2)}{g_2(x)} \quad \text{then} \quad y=1 \\
 \text{else} \quad y=0
 \]

- **Posterior of a class** – choose the class with better posterior probability
 \[
 p(y = 1 \mid x) > p(y = 0 \mid x) \quad \text{then} \quad y=1 \\
 \text{else} \quad y=0
 \]

 \[
 p(y = 1 \mid x) = \frac{p(x \mid \mu_1, \Sigma_1) p(y = 1)}{p(x \mid \mu_0, \Sigma_2) p(y = 0) + p(x \mid \mu_1, \Sigma_1) p(y = 1)}
 \]
QDA: Quadratic decision boundary

Linear discriminant analysis (LDA)
- When covariances are the same
 \[\mathbf{x} \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[\mathbf{x} \sim N(\mu_1, \Sigma), \ y = 1 \]
LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary
Generative classification models

Idea:
1. **Represent and learn the distribution** \(p(x, y) \)
2. **Use it to define probabilistic discriminant functions**

E.g. \(g_o(x) = p(y = 0 \mid x) \quad g_1(x) = p(y = 1 \mid x) \)

Typical model \(p(x, y) = p(x \mid y) p(y) \)

- **\(p(x \mid y) = \text{Class-conditional distributions (densities)} \)**
 - Binary classification: two class-conditional distributions
 \(p(x \mid y = 0) \quad p(x \mid y = 1) \)
- **\(p(y) = \text{Priors on classes} \) - probability of class \(y \)**
 - Binary classification: Bernoulli distribution
 \(p(y = 0) + p(y = 1) = 1 \)

Naïve Bayes classifier

- **A generative classifier model with an additional simplifying assumption:**
 - All input attributes are conditionally independent of each other given the class.

So we have:

\[
p(x, y) = p(x \mid y) p(y)
\]

\[
p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y)
\]
Learning parameters of the model

Much simpler density estimation problems
• We need to learn:
 \[p(x \mid y = 0) \text{ and } p(x \mid y = 1) \text{ and } p(y) \]
• Because of the assumption of the conditional independence we need to learn:
 for every variable \(i \): \(p(x_i \mid y = 0) \text{ and } p(x_i \mid y = 1) \)
• Much easier if the number of input attributes is large
• Also, the model gives us a flexibility to represent input attributes different of different forms !!!
• E.g. one attribute can be modeled using the Bernoulli, the other as Gaussian density, or as a Poisson distribution

Making a class decision for the Naïve Bayes

Discriminant functions
• **Likelihood of data** – choose the class that explains the input data \((x) \) better (likelihood of the data)
 \[
 g_1(x) = \prod_{j=1}^{d} p(x_j \mid \Theta_{1,j}) > \prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \quad \text{then } y=1 \\
 g_0(x) = \prod_{j=1}^{d} p(x_j \mid \Theta_{1,j}) \quad \text{else } y=0
 \]
• **Posterior of a class** – choose the class with better posterior probability \(p(y = 1 \mid x) > p(y = 0 \mid x) \)
 \[
 p(y = 1 \mid x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right)p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right)p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right)p(y = 1)}
 \]
Back to logistic regression

- **Two models with linear decision boundaries:**
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices
 \[
 x \sim N(\mu_0, \Sigma) \quad \text{for} \quad y = 0
 \]
 \[
 x \sim N(\mu_1, \Sigma) \quad \text{for} \quad y = 1
 \]

- **Two models are related!!!**
 - When we have 2 Gaussians with the same covariance matrix the probability of \(y \) given \(x \) has the form of a logistic regression model!!!
 \[
 p(y = 1 \mid x, \mu_0, \mu_1, \Sigma) = g(w^T x)
 \]

When is the logistic regression model correct?

- **Members of the exponential family can be often more naturally described as**
 \[
 f(x \mid \theta, \phi) = h(x, \phi) \exp \left\{ \frac{\theta^T x - A(\theta)}{a(\phi)} \right\}
 \]
 \(\theta \) - A location parameter \(\phi \) - A scale parameter

- **Claim:** A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor \(\phi \)

- **Very powerful result!!!!**
 - We can represent posteriors of many distributions with the same small network
Linear units

Linear regression

\[f(x) = w^T x \]

Logistic regression

\[f(x) = p(y = 1 \mid x, w) = g(w^T x) \]

Gradient update:

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i))x_i \]

Online:

\[w \leftarrow w + \alpha (y - f(x))x \]

Gradient-based learning

- The **same simple gradient update rule** derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the log-likelihood measure the function models and the models for the output selection fit together:
 - **Linear model + Gaussian noise**
 \[y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]
 - **Logistic + Bernoulli**
 \[y = \text{Bernoulli}(\theta) \]
 \[\theta = p(y = 1 \mid x) = g(w^T x) \]
Generalized linear models (GLIM)

Assumptions:
- The conditional mean (expectation) is:
 \[\mu = f(\mathbf{w}^T \mathbf{x}) \]
 - Where \(f(.) \) is a response function
- Output \(y \) is characterized by an exponential family distribution with a conditional mean \(\mu \)

Examples:
- Linear model + Gaussian noise
 \[y = \mathbf{w}^T \mathbf{x} + \epsilon \quad \epsilon \sim N(0, \sigma^2) \]
- Logistic + Bernoulli
 \[y \approx \text{Bernoulli}(\theta) \]
 \[\theta = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} \]

Generalized linear models

- A canonical response functions \(f(.) \):
 - encoded in the distribution
 \[p(\mathbf{x} \mid \theta, \varphi) = h(x, \varphi) \exp \left\{ \frac{\theta^T \mathbf{x} - A(\theta)}{a(\varphi)} \right\} \]
- Leads to a simple gradient form
- Example: Bernoulli distribution
 \[p(x \mid \mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ \log \left(\frac{\mu}{1 - \mu} \right) x + \log(1 - \mu) \right\} \]
 \[\theta = \log \left(\frac{\mu}{1 - \mu} \right) \quad \mu = \frac{1}{1 + e^{-\theta}} \]
 - Logistic function matches the Bernoulli
When does the logistic regression fail?

- Quadratic decision boundary is needed

When does the logistic regression fail?

- Another example of a non-linear decision boundary
Non-linear extension of logistic regression

- use feature (basis) functions to model nonlinearities
- the same trick as used for the linear regression

Linear regression
\[f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x) \]

Logistic regression
\[f(x) = g\left(w_0 + \sum_{j=1}^{m} w_j \phi_j(x)\right) \]

\(\phi_j(x) \) - an arbitrary function of x

Evaluation of classifiers
For any data set we use to test the classification model on we can build a **confusion matrix:**

- Counts of examples with:
 - class label ω_j that are classified with a label α_i

<table>
<thead>
<tr>
<th>predict</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>

Evaluation

For any data set we use to test the model we can build a **confusion matrix:**

<table>
<thead>
<tr>
<th>predict</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>

Error: ?
Evaluation

For any data set we use to test the model we can build a confusion matrix:

\[
\begin{array}{c|cc}
\text{target} & \omega = 1 & \omega = 0 \\
\hline
\text{predict} & \alpha = 1 & 140 & 17 \\
 & \alpha = 0 & 20 & 54 \\
\end{array}
\]

Error: \(37/231\)
Accuracy: \(194/231\)

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

\[
\begin{array}{c|cc}
\text{target} & \omega = 1 & \omega = 0 \\
\hline
\text{predict} & \alpha = 1 & TP & FP \\
 & \alpha = 0 & FN & TN \\
\end{array}
\]

TP: True positive (hit)
FP: False positive (false alarm)
TN: True negative (correct rejection)
FN: False negative (a miss)
Additional statistics

- Sensitivity (recall)
 \[SENS = \frac{TP}{TP + FN} \]

- Specificity
 \[SPEC = \frac{TN}{TN + FP} \]

- Positive predictive value (precision)
 \[PPT = \frac{TP}{TP + FP} \]

- Negative predictive value
 \[NPV = \frac{TN}{TN + FN} \]

Binary classification: additional statistics

- Confusion matrix

<table>
<thead>
<tr>
<th>predict</th>
<th>1</th>
<th>0</th>
<th>PPV = 140/150</th>
<th>NPV = 180/200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>180</td>
<td>SENS = 140/160</td>
<td>SPEC = 180/190</td>
</tr>
</tbody>
</table>

Row and column quantities:
- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)
Classifiers

Project datapoints to one dimensional space:

Defined for example by: \(w^T x \) or \(p(y=1|x,w) \)

Binary decisions: Receiver Operating Curves

- **Probabilities:**
 - \(SENS \) \(p(x > x^* \mid x \in \omega_2) \)
 - \(SPEC \) \(p(x < x^* \mid x \in \omega_1) \)
Receiver Operating Characteristic (ROC)

- ROC curve plots:
 - SN = $p(x > x^* \mid x \in \omega_2)$
 - 1-SP = $p(x > x^* \mid x \in \omega_1)$
 - for different x^*

SENS
$p(x > x^* \mid x \in \omega_2)$

1-SPEC
$p(x > x^* \mid x \in \omega_1)$

ROC curve

CS 2750 Machine Learning
Receiver operating characteristic

• **ROC**
 – shows the discriminability between the two classes under different decision biases

• **Decision bias**
 – can be changed using different loss function

• **Quality of a classification model:**
 – Area under the ROC
 – Best value 1, worst (no discriminability): 0.5