Classification learning:
• Logistic regression
• Generative classification model

Classification

• Data: $D = \{d_1, d_2, ..., d_n\}$
 $d_i = \langle x_i, y_i \rangle$
 – y_i represents a discrete class value
• Goal: learn $f : X \rightarrow Y$

• Binary classification
 – A special case when $Y \in \{0,1\}$

• First step:
 – we need to devise a model of the function f
Discriminant functions

- A common way to represent a classifier is by using
 - Discriminant functions
- Works for both the binary and multi-way classification
- Idea:
 - For every class $i = 0, 1, ..., k$ define a function $g_i(x)$ mapping $X \rightarrow \mathbb{R}$
 - When the decision on input x should be made choose the class with the highest value of $g_i(x)$

$$y^* = \text{arg max}_i g_i(x)$$
Discriminant functions

\[g_1(x) \leq g_0(x) \]

\[g_1(x) \geq g_0(x) \]
Discriminant functions

- Define decision boundary

\[g_1(x) \geq g_0(x) \]

\[g_1(x) = g_0(x) \]

Quadratic decision boundary

\[g_1(x) \geq g_0(x) \]

\[g_1(x) = g_0(x) \]
Logistic regression model

- Defines a linear decision boundary
- Discriminant functions:
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]
 where \(g(z) = \frac{1}{1 + e^{-z}} \) - is a logistic function
 \[f(x, w) = g_1(w^T x) = g(w^T x) \]

Logistic function

- Function \[g(z) = \frac{1}{1 + e^{-z}} \]
- Is also referred to as a sigmoid function
- Replaces the threshold function with smooth switching
- Takes a real number and outputs the number in the interval \([0, 1]\)
Logistic regression model

- **Discriminant functions:**
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]

- **Values of discriminant functions vary in interval [0,1]**
 - **Probabilistic interpretation**
 \[f(x, w) = p(y = 1 \mid w, x) = g_1(x) = g(w^T x) \]

\[
\begin{align*}
\sum_{i=0}^{d} & \quad w_i x_i \\
1 \quad & \quad w_0 \\
\end{align*}
\]

Logistic regression

- **We learn a probabilistic function**
 \[f : X \to [0,1] \]
 - where \(f \) describes the probability of class 1 given \(x \)
 \[f(x, w) = g_1(w^T x) = p(y = 1 \mid x, w) \]

Note that:
\[p(y = 0 \mid x, w) = 1 - p(y = 1 \mid x, w) \]

- **Transformation to binary class values:**

 If \(p(y = 1 \mid x) \geq 1/2 \) then choose 1
 Else choose 0
Linear decision boundary

- Logistic regression model defines a linear decision boundary
- Why?
- Answer: Compare two discriminant functions.
- Decision boundary: \(g_1(x) = g_0(x) \)
- For the boundary it must hold:

\[
\log \frac{g_o(x)}{g_1(x)} = \log \frac{1 - g(w^T x)}{g(w^T x)} = 0
\]

\[
\log \frac{g_o(x)}{g_1(x)} = \log \frac{\exp(-w^T x)}{1 + \exp(-w^T x)} = \log \exp(-w^T x) = w^T x = 0
\]
Logistic regression: parameter learning

Likelihood of outputs
• Let
 \[D_i = \langle x_i, y_i \rangle \quad \mu_i = p(y_i = 1 \mid x_i, w) = g(z_i) = g(w^T x) \]
• Then
 \[L(D, w) = \prod_{i=1}^{n} P(y = y_i \mid x_i, w) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} \]
• Find weights \(w \) that maximize the likelihood of outputs
 – Apply the log-likelihood trick The optimal weights are the same for both the likelihood and the log-likelihood
 \[l(D, w) = \log \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \sum_{i=1}^{n} \log \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \]
 \[= \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

Logistic regression: parameter learning
• Log likelihood
 \[l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]
• Derivatives of the loglikelihood
 \[- \frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} -x_{i,j} (y_i - g(z_i)) \]
 \[\nabla_w -l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i)) \]
• Gradient descent:
 \[w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [-l(D, w)] |_{w^{(k-1)}} \]
 \[w^{(k)} \leftarrow w^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(w^{(k-1)}, x_i)] x_i \]
Logistic regression. Online gradient descent

- On-line component of the loglikelihood

 $$- J_{\text{online}} (D_i, w) = y_i \log \mu_i + (1 - y_i) \log (1 - \mu_i)$$

- On-line learning update for weight \(w \)

 $$w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [J_{\text{online}} (D_i, w)] \big|_{w^{(k-1)}}$$

- \(i \)th update for the logistic regression and \(D_k = \langle x_k, y_k \rangle \)

 $$w^{(i)} \leftarrow w^{(k-1)} + \alpha(k) [y_i - f(w^{(k-1)}, x_k)] x_k$$

Online logistic regression algorithm

Online-logistic-regression (\(D, \) number of iterations)

initialize weights \(w = (w_0, w_1, w_2 \ldots w_d) \)

for \(i = 1: \) number of iterations

 do select a data point \(D_i = \langle x_i, y_i \rangle \) from \(D \)

 set \(\alpha = 1/i \)

 update weights (in parallel)

 $$w \leftarrow w + \alpha(i) [y_i - f(w, x_i)] x_i$$

end for

return weights \(w \)
Online algorithm. Example.
Online algorithm. Example.

Derivation of the gradient

- **Log likelihood**
 \[l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

- **Derivatives of the loglikelihood**
 \[
 \frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} [y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)] \frac{\partial z_i}{\partial w_j}
 \]

 Derivative of a logistic function
 \[
 \frac{\partial g(z_i)}{\partial z_i} = g(z_i)(1 - g(z_i))
 \]

 \[
 \frac{\partial}{\partial z_i} [y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)] = y_i \frac{1}{g(z_i)} \frac{\partial g(z_i)}{\partial z_i} + (1 - y_i) \frac{-1}{1 - g(z_i)} \frac{\partial g(z_i)}{\partial z_i}
 \]

 \[
 = y_i (1 - g(z_i)) + (1 - y_i)(-g(z_i)) = y_i - g(z_i)
 \]

 \[
 \nabla_w l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i))
 \]
Generative approach to classification

Idea:
1. Represent and learn the distribution $p(x, y)$
2. Use it to define probabilistic discriminant functions

E.g. $g_o(x) = p(y = 0 | x)$ $g_1(x) = p(y = 1 | x)$

Typical model $p(x, y) = p(x | y)p(y)$
- $p(x | y)$ = Class-conditional distributions (densities)
 binary classification: two class-conditional distributions
 $p(x | y = 0)$ $p(x | y = 1)$
- $p(y)$ = Priors on classes - probability of class y
 binary classification: Bernoulli distribution
 $p(y = 0) + p(y = 1) = 1$

Quadratic discriminant analysis (QDA)

Model:
- Class-conditional distributions
 - multivariate normal distributions
 $x \sim N(\mu_0, \Sigma_0)$ for $y = 0$
 $x \sim N(\mu_1, \Sigma_1)$ for $y = 1$
 Multivariate normal $x \sim N(\mu, \Sigma)$

$$p(x | \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]$$

- Priors on classes (class 0,1) $y \sim Bernoulli$
 - Bernoulli distribution
 $$p(y, \theta) = \theta^y (1 - \theta)^{1-y} \quad y \in \{0,1\}$$
Learning of parameters of the QDA model

Density estimation in statistics

- We see examples — we do not know the parameters of Gaussians (class-conditional densities)

\[
p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
\]

- **ML estimate of parameters** of a multivariate normal \(N(\mu, \Sigma) \) for a set of \(n \) examples of \(x \)

Optimize log-likelihood:

\[
l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i \mid \mu, \Sigma)
\]

\[
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
\]

- How about class priors?
QDA: Making class decision

Basically we need to design discriminant functions

Two possible choices:

- **Likelihood of data** – choose the class (Gaussian) that explains the input data \(\mathbf{x} \) better (likelihood of the data)

\[
p_g(\mathbf{x} | \mu, \Sigma) > p_g(\mathbf{x} | \mu', \Sigma') \quad \text{then } y=1
\]

\[
g_0(\mathbf{x}) \quad \text{else } y=0
\]

- **Posterior of a class** – choose the class with better posterior probability

\[
p(\mathbf{y} = 1 | \mathbf{x}) > p(\mathbf{y} = 0 | \mathbf{x}) \quad \text{then } y=1
\]

\[
\text{else } y=0
\]

\[
p(\mathbf{y} = 1 | \mathbf{x}) = \frac{p(\mathbf{x} | \mu, \Sigma) p(\mathbf{y} = 1) \mid_{\mathbf{y} = 1}}{p(\mathbf{x} | \mu_0, \Sigma_0) p(\mathbf{y} = 0) + p(\mathbf{x} | \mu_1, \Sigma_1) p(\mathbf{y} = 1)}
\]
QDA: Quadratic decision boundary

Contours of class-conditional densities

QDA: Quadratic decision boundary

Decision boundary

CS 2750 Machine Learning
Linear discriminant analysis (LDA)

- When covariances are the same
 \[x \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[x \sim N(\mu_1, \Sigma), \ y = 1 \]

LDA: Linear decision boundary
Generative classification models

Idea:

1. Represent and learn the distribution $p(x, y)$
2. Use it to define probabilistic discriminant functions

E.g. $g_y(x) = p(y = 0 | x)$ $g_1(x) = p(y = 1 | x)$

Typical model $p(x, y) = p(x | y)p(y)$

- $p(x | y) =$ Class-conditional distributions (densities)
 - binary classification: two class-conditional distributions
 $p(x | y = 0)$ $p(x | y = 1)$
- $p(y) =$ Priors on classes - probability of class y
 - binary classification: Bernoulli distribution
 $p(y = 0) + p(y = 1) = 1$