Linear regression

Outline

Linear Regression
- Linear model
- Loss (error) function based on the least squares fit
- Parameter estimation.
- Gradient methods.
- On-line regression techniques.
- Linear additive models
- Statistical model of linear regression
Supervised learning

Data: \(D = \{ D_1, D_2, ..., D_n \} \) a set of \(n \) examples

- \(D_i = \langle x_i, y_i \rangle \)
- \(x_i = (x_{i,1}, x_{i,2}, \cdots x_{i,d}) \) is an input vector of size \(d \)
- \(y_i \) is the desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)

\[y_i \approx f(x_i) \text{ for all } i = 1, ..., n \]

- **Regression:** \(Y \) is **continuous**
 - Example: earnings, product orders \(\rightarrow \) company stock price
- **Classification:** \(Y \) is **discrete**
 - Example: handwritten digit in binary form \(\rightarrow \) digit label

Linear regression

- **Function** \(f : X \rightarrow Y \) is a linear combination of input components

\[f(x) = w_0 + w_1 x_1 + w_2 x_2 + \cdots w_d x_d = w_0 + \sum_{j=1}^{d} w_j x_j \]

\(w_0, w_1, \ldots, w_k \) - parameters (weights)

Bias term \(1 \)

Input vector \(x \)

\[x_1, x_2, \ldots, x_d \]

- Diagram showing the linear regression function and the bias term.
Linear regression

• **Shorter (vector) definition of the model**
 – Include bias constant in the input vector

\[
x = (1, x_1, x_2, \ldots, x_d)
\]

\[
f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \ldots w_d x_d = \mathbf{w}^T \mathbf{x}
\]

\[w_0, w_1, \ldots, w_k\] - parameters (weights)

\[\sum_{i=1}^{1} f(x, w) = 1 \rightarrow \sum_{i=1}^{1} \sum_{x} \sum_{w} f(x, w)
\]

Input vector

x

\[
\begin{cases}
 1 & w_0 \\
 x_1 & w_1 \\
 x_2 & w_2 \\
 \vdots & w_d \\
 x_d & \end{cases}
\]

Linear regression. Error.

• Data: \(D_i =< x_i, y_i > \)
• Function: \(x_i \rightarrow f(x_i) \)
• We would like to have \(y_i \approx f(x_i) \) for all \(i = 1, \ldots, n \)

• **Error function**
 – measures how much our predictions deviate from the desired answers

Mean-squared error

\[
J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

• Learning:
 We want to find the weights minimizing the error!
Linear regression. Example

• 1 dimensional input $x = (x_1)$

Linear regression. Example.

• 2 dimensional input $x = (x_1, x_2)$
Linear regression. Optimization.

- We want the **weights minimizing the error**
 \[J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

- For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0
 \[\frac{\partial}{\partial w_j} J_n(w) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,j} = 0 \]

- **Vector of derivatives:**
 \[\text{grad}_w (J_n(w)) = \nabla_w (J_n(w)) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i) x_i = 0 \]

Linear regression. Optimization.

- \(\text{grad}_w (J_n(w)) = 0 \) defines a set of equations in \(w \)
 \[\frac{\partial}{\partial w_0} J_n(w) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) = 0 \]
 \[\frac{\partial}{\partial w_1} J_n(w) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,1} = 0 \]
 \[\ldots \]
 \[\frac{\partial}{\partial w_d} J_n(w) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,d} = 0 \]
Solving linear regression

\[\frac{\partial}{\partial w_j} J_n(w) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,j} = 0 \]

By rearranging the terms we get a system of linear equations with \(d+1 \) unknowns:

\[Aw = b \]

\[
\begin{align*}
 w_0 \sum_{i=1}^{n} x_{i,0} &+ w_1 \sum_{i=1}^{n} x_{i,1} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} = \sum_{i=1}^{n} y_i \\
 w_0 \sum_{i=1}^{n} x_{i,0} x_{i,1} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,1} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,1} = \sum_{i=1}^{n} y_i x_{i,1} \\
 \vdots \\
 w_0 \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j}
\end{align*}
\]

Solving linear regression

- The optimal set of weights satisfies:
 \[\nabla_w (J_n(w)) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i) x_i = 0 \]

Leads to a system of linear equations (SLE) with \(d+1 \) unknowns of the form

\[Aw = b \]

Solution to SLE: ?
Solving linear regression

- The optimal set of weights satisfies:
 \[\nabla_w (J_n (w)) = - \frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i)x_i = 0 \]

 Leads to a system of linear equations (SLE) with \(d+1 \) unknowns of the form
 \[Aw = b \]

 \[
 w_0 \sum_{i=1}^{n} x_{i,0}x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1}x_{i,j} + \ldots + w_j \sum_{i=1}^{n} x_{i,j}x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d}x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j}
 \]

 Solution to SLE:
 \[w = A^{-1}b \]

- matrix inversion