Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Homework 1:
• due on Thursday, January 23 before the class

You should submit:
• A hardcopy of the report (before the lecture)
• Programs (if we ask for them) in electronic form
 – Instructions for program submissions are on the course web site
Outline

Outline:
• Density estimation:
 – Maximum likelihood (ML)
 – Bayesian parameter estimates
 – MAP
• Bernoulli distribution
• Binomial distribution
• Multinomial distribution
• Normal distribution

Density estimation

Density estimation: is an unsupervised learning problem

Goal: Learn relations among attributes in the data

Data: \(D = \{ D_1, D_2, \ldots, D_n \} \)
\(D_i = x_i \) a vector of attribute values

Attributes:
• modeled by random variables \(X = \{ X_1, X_2, \ldots, X_d \} \) with
 – Continuous or discrete valued variables

Density estimation: learn the underlying probability distribution: \(p(X) = p(X_1, X_2, \ldots, X_d) \) from \(D \)
Density estimation

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)
\[D_i = x_i \quad \text{a vector of attribute values} \]

Objective: estimate the underlying probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters \(\Theta \)
 \[p(X | \Theta) \]
- Example: mean and covariances of a multivariate normal
- Estimation: find parameters \(\Theta \) describing data \(D \)

Non-parametric
- The model of the distribution utilizes all examples in \(D \)
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor
Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables $X = \{X_1, X_2, \ldots, X_d\}$
- A model of the distribution over variables in X with parameters $\Theta : \hat{p}(X | \Theta)$
- Data $D = \{D_1, D_2, \ldots, D_n\}$

Objective: find parameters Θ such that $p(X | \Theta)$ fits data D the best

Parameter estimation

- **Maximum likelihood (ML)**
 - maximize $p(D | \Theta, \xi)$
 - yields: one set of parameters Θ_{ML}
 - the target distribution is approximated as:
 \[\hat{p}(X) = p(X | \Theta_{ML}) \]
- **Bayesian parameter estimation**
 - uses the posterior distribution over possible parameters
 \[p(\Theta | D, \xi) = \frac{p(D | \Theta, \xi) p(\Theta | \xi)}{p(D | \xi)} \]
 - Yields: all possible settings of Θ (and their “weights”)
 - The target distribution is approximated as:
 \[\hat{p}(X) = p(X | D) = \int p(X | \Theta) p(\Theta | D, \xi) d\Theta \]
Parameter estimation

Other possible criteria:

• **Maximum a posteriori probability (MAP)**

 maximize \(p(\Theta | D, \xi) \) (mode of the posterior)

 – Yields: one set of parameters \(\Theta_{MAP} \)

 – Approximation:

 \[\hat{p}(X) = p(X | \Theta_{MAP}) \]

• **Expected value of the parameter**

 \(\hat{\Theta} = E(\Theta) \) (mean of the posterior)

 – Expectation taken with regard to posterior \(p(\Theta | D, \xi) \)

 – Yields: one set of parameters

 – Approximation:

 \[\hat{p}(X) = p(X | \hat{\Theta}) \]

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D \) a sequence of outcomes \(x_i \) such that

• **head** \(x_i = 1 \)

• **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \) probability of a tail \(1 - \theta \)

Objective:

We would like to estimate the probability of a head \(\hat{\theta} \) from data
Parameter estimation. Example.

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 H H T T H H T H T T H T H T H H H T H H H H T H H H H T
 – Heads: 15
 – Tails: 10

What would be your estimate of the probability of a head?

$\tilde{\theta} = ?$

Solution: use frequencies of occurrences to do the estimate

$\tilde{\theta} = \frac{15}{25} = 0.6$

This is the maximum likelihood estimate of the parameter θ
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$P(x_i | \theta) = \theta^{x_i} (1-\theta)^{(1-x_i)} \quad \text{Bernoulli distribution}$

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$D = H H T H T H$ (encoded as $D=110101$)

What is the probability of observing the data sequence D:

$P(D | \theta) =$?
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = H \ H \ T \ H \ T \ H$

encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

likelihood of the data
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta)(1 - \theta)\theta
\]

\[
P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1 - x_i)}
\]

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter \(\theta \)

Our learning goal:
- Find the parameter \(\theta \) that fits the data \(D \) the best?

One solution to the “best”: Maximize the likelihood

\[
P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}
\]

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

\[
Error(D, \theta) = -P(D \mid \theta)
\]
Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ

probability of a tail $(1 - \theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Bernoulli distribution