Dimensionality reduction
Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

• Is there a lower dimensional representation of the data that captures well its characteristics?
• Assume:
 – We have an data \(\{ x_1, x_2, \ldots, x_N \} \) such that
 \[
 x_i = (x_i^1, x_i^2, \ldots, x_i^d)
 \]
 – Assume the dimension \(d \) of the data point \(x \) is very large
 – We want to analyze \(x \)
• Methods of analysis are sensitive to the dimensionality \(d \)
• Our goal: Find a lower dimensional representation of data
• Two learning problems:
 – supervised
 – unsupervised
Dimensionality reduction for classification

- **Classification problem example:**
 - We have an input data \(\{ \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \} \) such that
 \[
 \mathbf{x}_i = (x_{i1}, x_{i2}, \ldots, x_{id})
 \]
 and a set of corresponding output labels \(\{ y_1, y_2, \ldots, y_N \} \)
 - Assume the dimension \(d \) of the data point \(\mathbf{x} \) is very large
 - We want to classify \(\mathbf{x} \)

- **Problems with high dimensional input vectors**
 - A large number of parameters to learn, if a dataset is small this can result in:
 - Large variance of estimates and overfit
 - It becomes hard to explain what features are important in the model (too many choices some can be substitutable)

Dimensionality reduction

- **Solutions:**
 - Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - Combination of high dimensional inputs to a smaller set of features \(\varphi_k(\mathbf{x}) \); train classifier on new features
Feature selection

How to find a good subset of inputs/features?

- **We need:**
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features

- **Feature selection process can be:**
 - Dependent on the learning task
 - e.g. classification
 - Selection of features affected by what we want to predict
 - Independent of the learning task
 - Unsupervised methods
 - may lack the accuracy for classification/regression tasks

Task-dependent feature selection

Assume:

- **Classification problem:** \(\mathbf{x} \) – input vector, \(y \) - output
- Feature mappings \(\varphi = \{\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots \phi_k(\mathbf{x}), \ldots\} \)

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities

Selection approaches:

- **Filtering approaches**
 - Filter out features with small predictive potential
 - done before classification; typically uses univariate analysis

- **Wrapper approaches**
 - Select features that directly optimize the accuracy of the multivariate classifier

- **Embedded methods**
 - Feature selection and learning closely tied in the method
Feature selection through filtering

• **Assume:**
 – **Classification problem:** \(\mathbf{x} \) – input vector, \(y \) - output
 – Inputs in \(\mathbf{x} \) or feature mappings \(\phi_i (\mathbf{x}) \)

• **How to select the feature:**
 – **Univariate analysis**
 • Pretend that only one variable, \(x_k \), exists
 • See how well it predicts the output \(y \) alone
 – **Example:** differentially expressed features (or inputs)
 • Good separation in binary (case/control settings)

Differentially expressed features

• **Scores for measuring the differential expression**
 – T-Test score (Baldi & Long)
 • Based on the test that two groups come from the same population
 – Fisher Score
 \[
 Fisher (i) = \frac{\mu_i^{(+)}^2 - \mu_i^{(-)}^2}{\sigma_i^{(+)}^2 + \sigma_i^{(-)}^2}
 \]
 – Area under Receiver Operating Characteristic (AUC) score

Problems:

– if many random features, the features with a good differentially expressed score must arise
– Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).
Feature filtering

Other univariate scores:
• Correlation coefficients \(\rho(\phi_k, y) = \frac{\text{Cov}(\phi_k, y)}{\sqrt{\text{Var}(\phi_k)\text{Var}(y)}} \)
 – Measures linear dependences
• Mutual information
 \[I(\phi_k, y) = \sum_i \sum_j \tilde{P}(\phi_k = j, y = i) \log_2 \frac{\tilde{P}(\phi_k = j, y = i)}{\tilde{P}(\phi_k = j)\tilde{P}(y = i)} \]
• Univariate assumptions:
 – Only one feature and its effect on \(y \) is incorporated in the mutual information score
 – Effects of two features on \(y \) are independent
• What to do if the combination of features gives the best prediction?

Feature selection: dependent features

Filtering with dependent features
• Let \(\Phi \) be a current set of features (starting from complete set)
• We can remove feature \(\phi_k(x) \) from it when:
 \(\tilde{P}(y | \Phi \setminus \phi_k) \approx \tilde{P}(y | \Phi) \) for all values of \(\phi_k, y \)
• Repeat removals until the probabilities differ.

Problem: how to compute/estimate \(\tilde{P}(y | \Phi \setminus \phi_k), \tilde{P}(y | \Phi) \)?
Solution: make some simplifying assumption about the underlying probabilistic model
• Example: use a Naïve Bayes
• Advantage: speed, modularity, applied before classification
• Disadvantage: may not be as accurate
Feature selection: wrappers

Wrapper approach:
• The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature set?
• If the dimension is d then there 2d
• Idea: Greedy search in the space of classifiers
 – Gradually add features improving most the quality score
 – Gradually remove features that effect the accuracy the least
 – Score should reflect the accuracy of the classifier (error) and also prevent overfit
• Standard way to measure the quality:
 – Internal cross-validation (m-fold cross validation)

Internal cross-validation

• Split train set: to internal train and test sets
• Internal train set: train different models (defined e.g. on different subsets of features)
• Internal test set/s: estimate the generalization error and select the best model among possible models
• Internal cross-validation (m-fold):
 – Divide the train data into m equal partitions (of size N/m)
 – Hold out one partition for validation, train the classifiers on the rest of data
 – Repeat such that every partition is held out once
 – The estimate of the generalization error of the learner is the mean of errors of on all partitions
Feature selection: wrappers

- **Greedy (forward) search:**
 - logistic regression model with features

 Start with \(p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0) \)

 Choose feature \(x_i \) with the best error (in the internal step)
 \[p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_i x_i) \]

 Choose feature \(x_j \) with the best error (in the internal step)
 \[p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_j x_j + w_j x_j) \]

 Etc.

 When to stop?

 Goal: Stop adding features when the error on the data stops decreasing

Embedded methods

- **Feature selection + classification model learning** done together
- **Embedded models:**
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to ‘virtual’ removal of inputs from the model
 - Regularized logistic/linear regression
 - **Support vector machines**
 - Optimization of margins penalizes nonzero weights
 - **CART/Decision trees**
Dimensionality reduction

• Is there a lower dimensional representation of the data that captures well its characteristics?

• Assume:
 – We have an data \{x_1, x_2, ..., x_N\} such that
 \[x_i = (x_i^1, x_i^2, ..., x_i^d) \]
 – Assume the dimension \(d\) of the data point \(x\) is very large
 – We want to analyze \(x\)

• Methods of analysis are sensitive to the dimensionality \(d\)

• Our goal:
 – Find a lower dimensional representation of data of dimension \(d' < d\)

Principal component analysis (PCA)

• Objective: We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 – Different from the feature subset selection !!!

• PCA:
 – A linear transformation of \(d\) dimensional input \(x\) to \(M\) dimensional feature vector \(z\) such that \(M < d\) under which the retained variance is maximal.
 – Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.
PCA

\[X_{\text{prim}} = 0.04x + 0.06y - 0.99z \]
\[Y_{\text{prim}} = 0.70x + 0.70y + 0.07z \]

97% variance retained
Principal component analysis (PCA)

- **PCA:**
 - linear transformation of \(d\) dimensional input \(x\) to \(M\) dimensional feature vector \(z\) such that \(M < d\) under which the retained variance is maximal.
 - Task independent
- **Fact:**
 - A vector \(x\) can be represented using a set of orthonormal vectors \(u\)
 \[
 x = \sum_{i=1}^{d} z_i u_i
 \]
 - Leads to transformation of coordinates (from \(x\) to \(z\) using \(u\)’s)
 \[
 z_i = u_i^T x
 \]

PCA

- **Idea:** replace \(d\) coordinates with \(M\) of \(z_i\) coordinates to represent \(x\). We want to find the subset \(M\) of basis vectors.
 \[
 \tilde{x} = \sum_{i=1}^{M} z_i u_i + \sum_{i=M+1}^{d} b_i u_i
 \]
 \(b_i\) - constant and fixed
- **How to choose the best set of basis vectors?**
 - We want the subset that gives the best approximation of data \(x\) in the dataset on average (we use least squares fit)
 Error for data entry \(x^n\)
 \[
 x^n - \tilde{x}^n = \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i}) u_i
 \]
 Reconstruction error
 \[
 E_M = \frac{1}{2} \sum_{n=1}^{N} \|x^n - \tilde{x}^n\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^2
 \]
PCA

• **Differentiate the error function** with regard to all b_i and set equal to 0 we get:
 $$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = u_i^T \bar{x} \quad \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n$$

• Then we can rewrite:
 $$E_M = \frac{1}{2} \sum_{i=M+1}^{d} u_i^T \Sigma u_i \quad \Sigma = \sum_{n=1}^{N} (x^n - \bar{x})(x^n - \bar{x})^T$$

• The error function is optimized when basis vectors satisfy:
 $$\Sigma u_i = \lambda_i u_i \quad E_M = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_i$$

The best M basis vectors: discard vectors with d-M smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector u_i — is called a **principal component**

PCA

• Once eigenvectors u_i with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

![PCA Diagram](image)

• To find the “true” dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)

• **Problem**: PCA is a linear method. The “true” dimensionality can be overestimated. There can be non-linear correlations.
Dimensionality reduction with neural nets

- **PCA** is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- **Auto-associative network**: a neural network with the same inputs and outputs (x)

\[
\begin{align*}
\mathbf{z} &= (z_1, z_2)
\end{align*}
\]

- The middle layer corresponds to the reduced dimensions

Error criterion:

\[
E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} \left(y_i (x^n) - x^n \right)^2
\]

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- **Non-linearities** modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used, the model replicates PCA optimization through learning
Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved.

- Used in visualization – d-diminsional data transformed to 3D or 2D.

- **Dissimilarities before projection** \(\delta_{i,j} = \| x_i - x_j \| \)

- **Objective**: Optimize points and their coordinates by fitting the dissimilarities afterwards.

\[
\min_{\{x_1, x_2, \ldots, x_n\}} \sum_{i < j} (\| x_i - x_j \| - \delta_{ij})^2
\]

Other (unsupervised) methods

- **Independent component analysis**:
 - Identify independent components/signals/sources in the original data
 - Non-Gaussian signals

\[
x = As \quad \text{X is a linear combination of values for sources}
\]

\[
s = Wx = A^{-1}x
\]
Dimensionality reduction through clustering

• Clustering algorithms
 – group together “similar” instances in the data sample

• Dimensionality reduction based on clustering:
 – Replace a high dimensional data entry with a cluster label

• Problem:
 – Deterministic clustering gives only one label per input
 – May not be enough to represent the data for prediction

• Solutions:
 – Clustering over subsets of input data
 – Soft clustering (probability of a cluster is used directly)

Soft clustering (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
 – Each group is more or less responsible for a data entry
 (responsibility – a posterior of a group given the data entry)

Mixture of G. responsibility
\[h_{ij} = \frac{\pi_i p(x_i | y_i = i)}{\sum_{u=1}^{k} \pi_u p(x_i | y_i = u)} \]

• Dimensionality reduction based on soft clustering
 – Replace a high dimensional data with the set of group posteriors
 – Feed all posteriors to the learner e.g. linear regressor, classifier
Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning
- **Two stage algorithms**
 - Learn the clustering
 - Learn the classification
- Input clustering: \(\mathbf{x} \) (high dimensional)
- Output clustering (Input classifier): \(p(c = i \mid \mathbf{x}) \)
- Output classifier: \(y \)
- **Example: Networks with Radial Basis Functions (RBFs)**
- **Problem:**
 - Clustering learns based on \(p(\mathbf{x}) \) (disregards the target)
 - Prediction based on \(p(y \mid x) \)

Networks with radial basis functions

- An alternative to **multilayer NN for non-linearities**
- Radial basis functions:
 \[
 f(x) = w_0 + \sum_{j=1}^{k} w_j \phi_j(x)
 \]
 - Based on interpolations of prototype points (**means**)
 - Affected by the distance between the \(\mathbf{x} \) and the **mean**
 - Fit the outputs of basis functions through the linear model
- Choice of basis functions:
 Gaussian
 \[
 \phi_j(x) = \exp \left(-\frac{||x - \mu_j||^2}{2\sigma_j^2} \right)
 \]
- **Learning:**
 - In practice seem to work OK for up to 10 dimensions
 - For higher dimensions (ridge functions – logistic) combining multiple learners seem to do better job