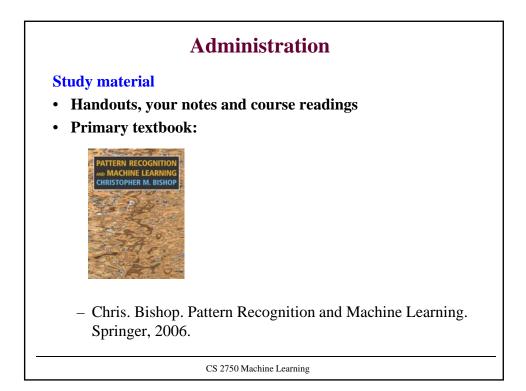
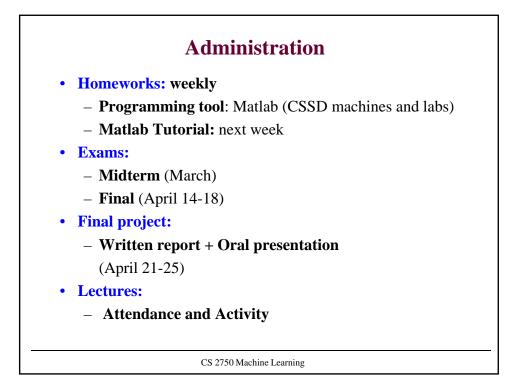
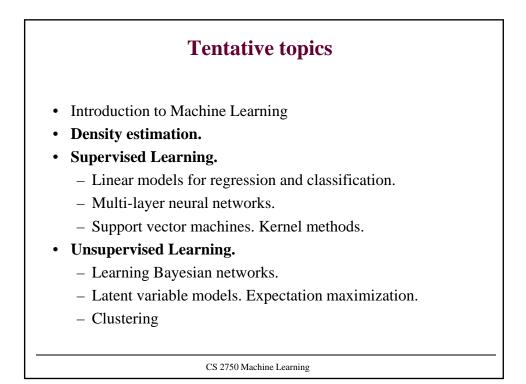


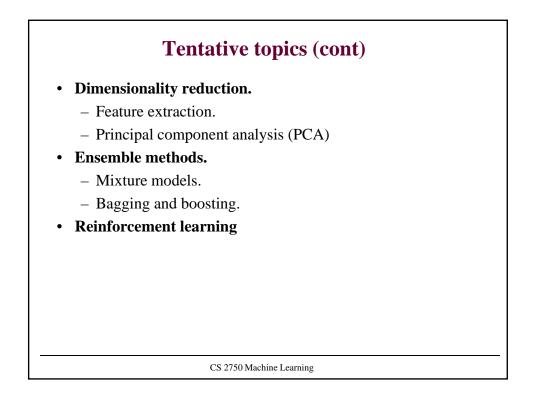
Administration
Instructor:
Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845
TA:
Charmgil Hong
charmgil <u>@cs.pitt.edu</u>
5406 Sennott Square
Office hours: TBA
CS 2750 Machine Learning

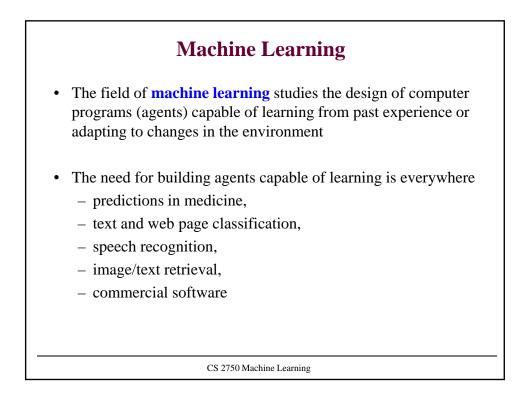


Administration
Study material
Other books:
– J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
 Koller, Friedman. Probabilistic graphical models. MIT Press, 2009.
 Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2001.
 Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000.
– T. Mitchell. Machine Learning. McGraw Hill, 1997.
CS 2750 Machine Learning









Learning

Learning process:

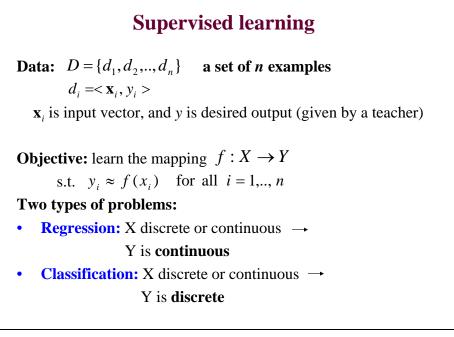
Learner (a computer program) processes data **D** representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen

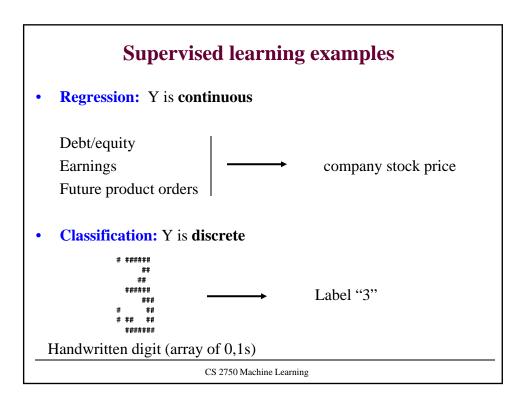
Example:

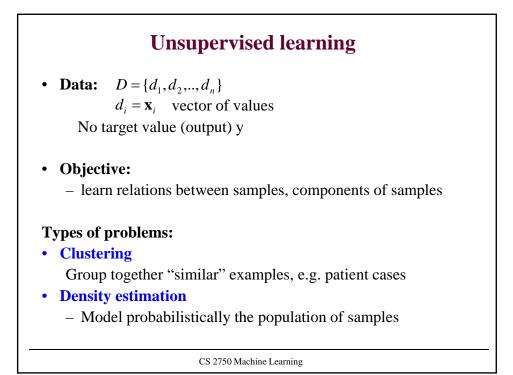
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

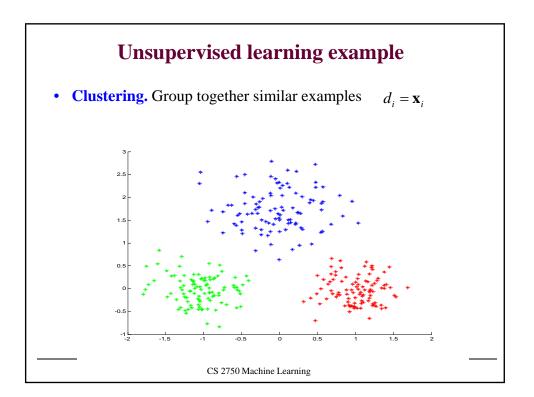
- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

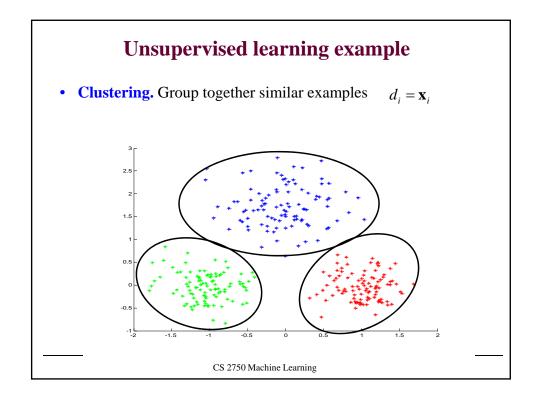
Types of learning	
Supervised learning	
– Learning mapping between input x and desired of	output y
– Teacher gives me y's for the learning purposes	
Unsupervised learning	
– Learning relations between data components	
 No specific outputs given by a teacher 	
Reinforcement learning	
– Learning mapping between input x and desired of	output y
 Critic does not give me y's but instead a signal (reinforcement) of how good my answer was 	
Other types of learning:	
 Concept learning, Active learning, Transfer learning 	earning,

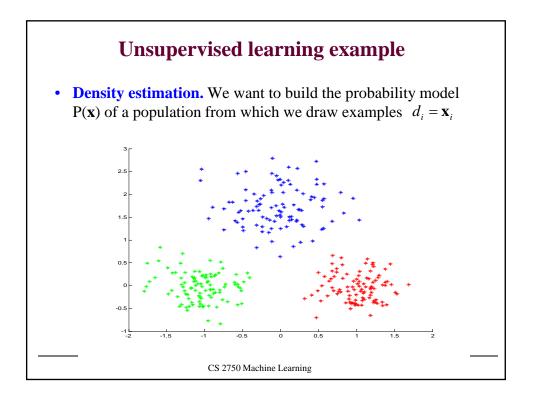


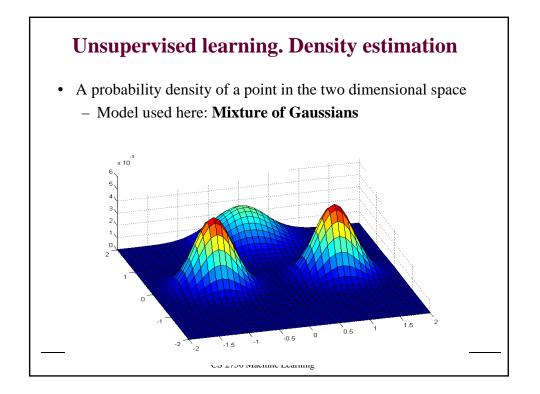


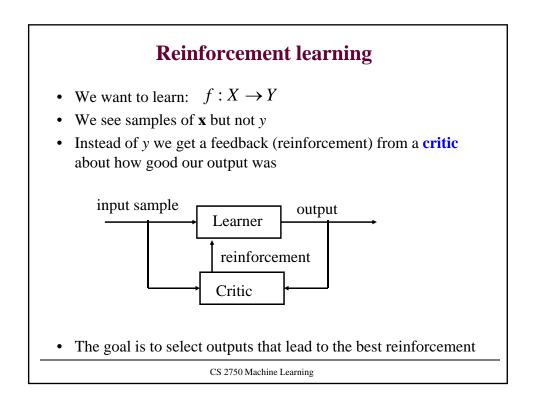


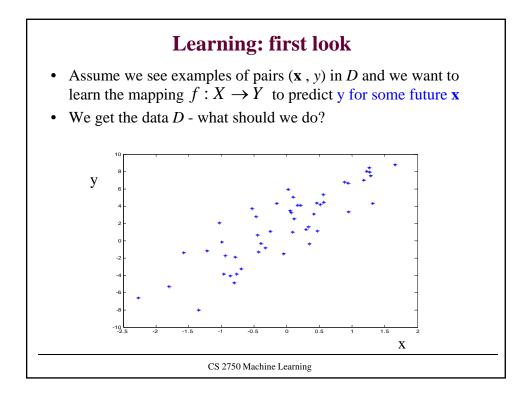


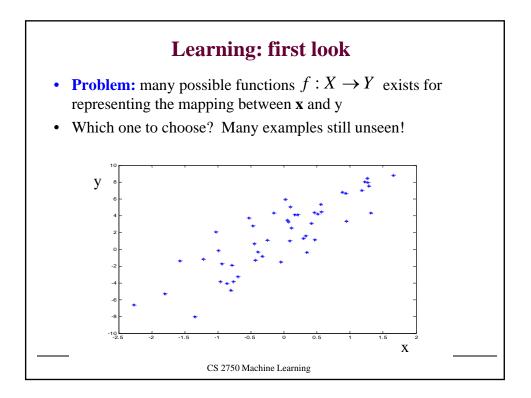


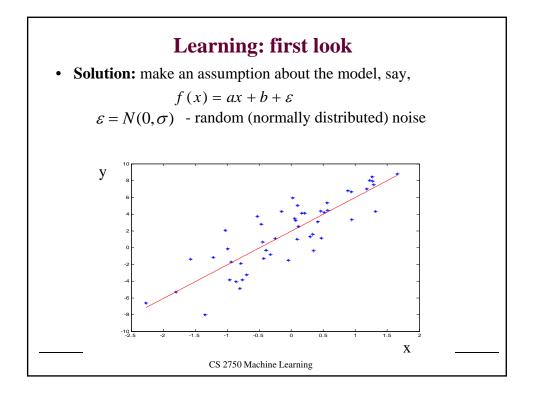


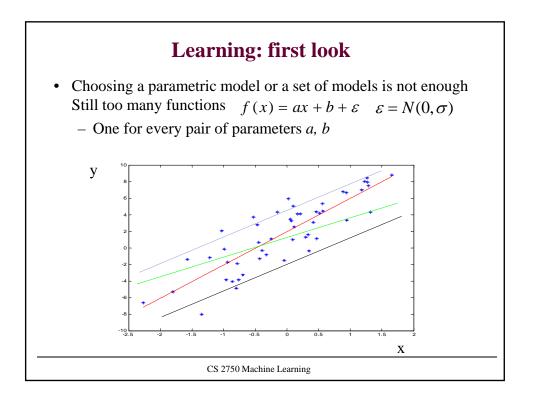


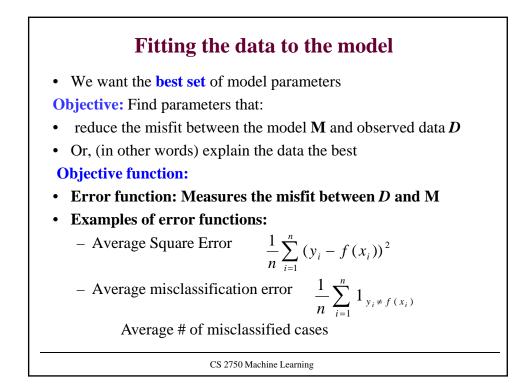


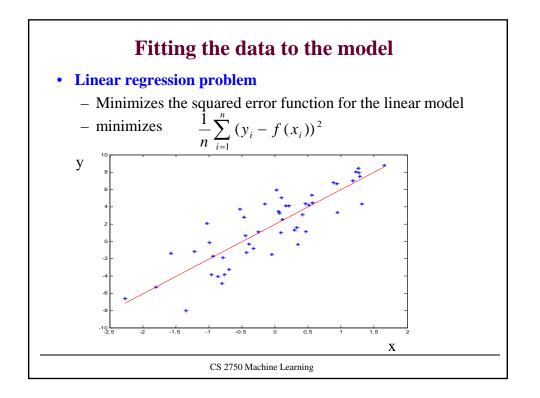












<section-header> Learning: summary Sheet a model or a set of models (with parameters) E.g. f(x) = ax + b Select the error function to be optimized E.g. 1/n x = 1/n (y_i - f(x_i))² Find the set of parameters optimizing the error function The model and parameters with the smallest error represent the best fit of the model to the data But there are problems one must be careful about ...

Learning			
Problem			
• We fit the model based on past experience (past examples seen)			
• But ultimately we are interested in learning the mapping that performs well on the whole population of examples			
Training data: Data used to fit the parameters of the model			
Training error: $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$			
True (generalization) error (over the whole unknown population):			
$E_{(x,y)}[(y-f(x))^2]$ Mean squared error			
Training error tries to approximate the true error !!!!			
Does a good training error imply a good generalization error ?			
CS 2750 Machine Learning			

Learning

Problem

- We fit the model based on past examples observed in **D**
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model **Training error:** $1 n^{n}$

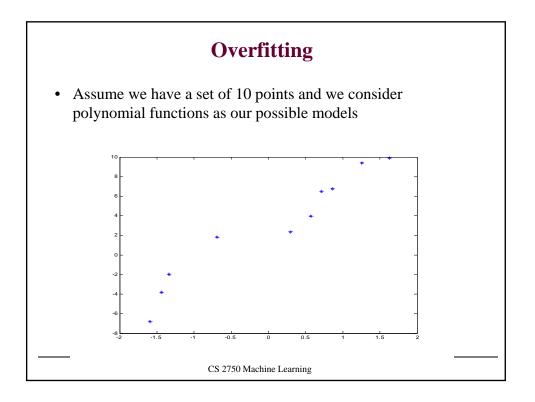
$$Error(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

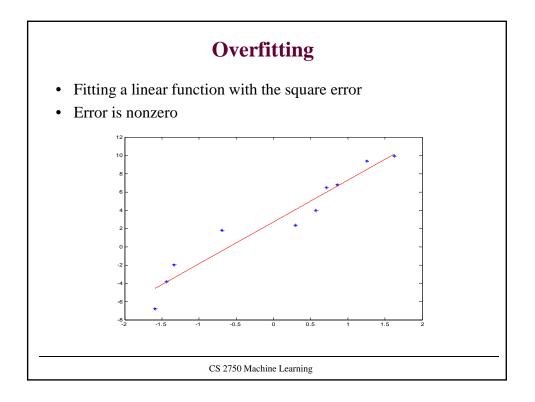
True (generalization) error (over the whole population):

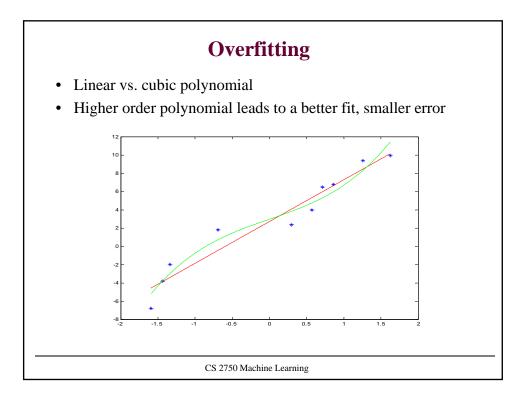
 $E_{(x,y)}[(y-f(x))^2]$ Mean squared error

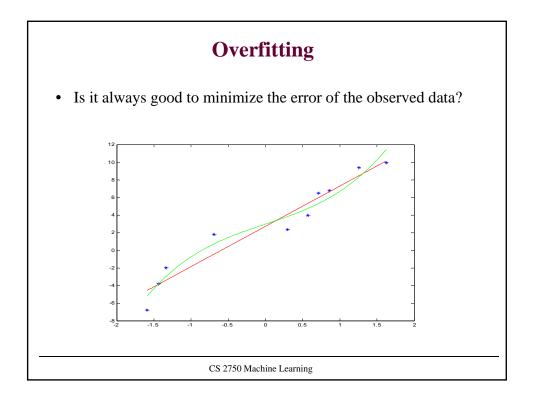
Training error tries to approximate the true error !!!!

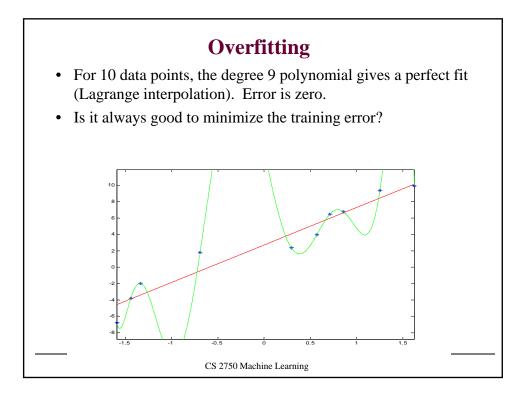
Does a good training error imply a good generalization error ?

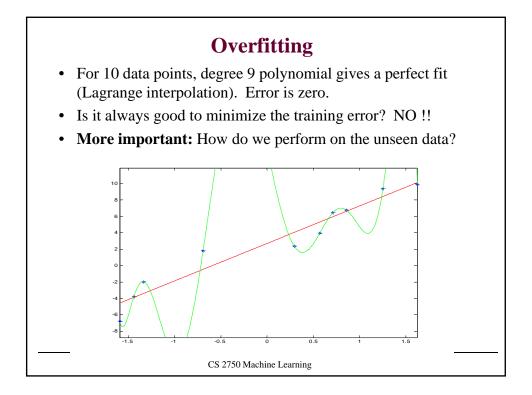


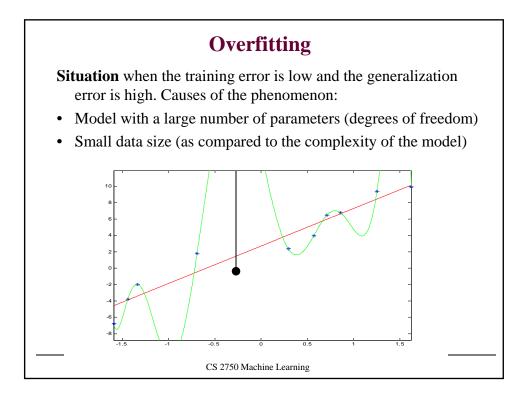












How to evaluate the learner's performance? Generalization error is the true error for the population of examples we would like to optimize E_(x,y)[(y - f(x))²] But it cannot be computed exactly Sample mean only approximates the true mean Optimizing (mean) training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

• So how to test the generalization error?

