Classification learning II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Classification

• **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)
 \[d_i = \langle x_i, y_i \rangle \]
 – \(y_i \) represents a discrete class value

• **Goal:** learn \(f : X \rightarrow Y \)

• **Binary classification**
 – A special case when \(Y \in \{0,1\} \)

• **First step:**
 – we need to devise a model of the function \(f \)
Discriminant functions

• A common way to represent a classifier is by using
 – Discriminant functions
• Works for both the binary and multi-way classification
• Idea:
 – For every class $i = 0, 1, \ldots, k$ define a function $g_i(x)$
 mapping $X \rightarrow \mathbb{R}$
 – When the decision on input x should be made choose the class with the highest value of $g_i(x)$

$$y^* = \arg \max_i g_i(x)$$
Discriminant functions

- Discriminant functions depend on parameters
 \[g_i(x) \sim g_i(x, w) \]

- Logistic regression model (for 2 classes)
 \[
 g_1(x, w) = g(w^T x) \quad g_0(x, w) = 1 - g(w^T x)
 \]
 \[
 g(z) = 1/(1 + e^{-z}) \quad \text{- is a logistic function}
 \]
 \[
 g_1(x, w) \sim p(y = 1 \mid x, w) \quad \text{- Models directly class posterior}
 \]

- Generative probabilistic model (QDA)
 \[
 g_1(x, \Theta) = p(y = 1 \mid x, \Theta) = \frac{p(x \mid \mu_1, \Sigma_1) p(y = 1)}{p(x \mid \mu_0, \Sigma_0) p(y = 0) + p(x \mid \mu_1, \Sigma_1) p(y = 1)}
 \]
 \[
 g_0(x, \Theta) = p(y = 0 \mid x, \Theta) = 1 - g_1(x, \Theta)
 \]
Discriminative vs generative models

• What is the difference in between discriminative and generative models and learning?

• **Discriminative**: learns directly the discriminant functions and their parameters

• Define the loss function using \(g_1(x, w) \) and \(y \)

\[
\mathbf{w}^* = \arg \max_{\mathbf{w}} \text{Loss}(g_1(x, \mathbf{w}), y)
\]

• **Generative probabilistic**: learns the joint probability distribution \(p(x, y) \) and its parameters, discriminant functions are derived from the joint.

E.g: ML estimate of the parameters of the joint model

\[
\Theta^* = \arg \max_{\Theta} p(D \mid \Theta) = \arg \max_{\Theta} \prod_{i=1}^{n} p(x_i, y_i \mid \Theta)
\]
Logistic regression model

- **Discriminant functions:**
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]

- Values of discriminant functions vary in [0,1]
 - **Probabilistic interpretation**
 \[g_1(x, w) = p(y = 1 \mid w, x) = g(w^T x) \]
Binary classification example
Logistic regression model. Decision boundary

- **LR defines a linear decision boundary**

Example: 2 classes (blue and red points)
Generative approach to classification

Idea:

1. Represent and learn the distribution \(p(x, y) \)
2. Use it to define probabilistic discriminant functions

E.g. \(g_o(x) = p(y = 0 \mid x) \quad g_1(x) = p(y = 1 \mid x) \)

Typical model \(p(x, y) = p(x \mid y) p(y) \)

- \(p(x \mid y) = \text{Class-conditional distributions (densities)} \)
 - binary classification: two class-conditional distributions
 \(p(x \mid y = 0) \quad p(x \mid y = 1) \)
- \(p(y) = \text{Priors on classes} - \) probability of class \(y \)
 - binary classification: Bernoulli distribution
 \[p(y = 0) + p(y = 1) = 1 \]
Quadratic discriminant analysis (QDA)

Model:

- **Class-conditional distributions**
 - multivariate normal distributions
 \[
 \begin{align*}
 x & \sim N(\mu_0, \Sigma_0) \quad \text{for} \quad y = 0 \\
 x & \sim N(\mu_1, \Sigma_1) \quad \text{for} \quad y = 1
 \end{align*}
 \]
 Multivariate normal \(x \sim N(\mu, \Sigma) \)

 \[
 p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right]
 \]

- **Priors on classes (class 0,1)** \(y \sim Bernoulli \)
 - Bernoulli distribution
 \[
 p(y, \theta) = \theta^y (1 - \theta)^{1-y} \quad y \in \{0,1\}
 \]
Learning of parameters of the QDA model

Density estimation in statistics

• We see examples – we do not know the parameters of Gaussians (class-conditional densities)

\[p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right] \]

• ML estimate of parameters of a multivariate normal \(N(\mu, \Sigma) \) for a set of \(n \) examples of \(x \)

Optimize log-likelihood: \(l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i \mid \mu, \Sigma) \)

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]

• How about class priors?
QDA
2 Gaussian class-conditional densities
QDA: Making class decision

Basically we need to design discriminant functions

Two possible choices:

- **Likelihood of data** – choose the class (Gaussian) that explains the input data (x) better (likelihood of the data)

\[
\frac{p(x | \mu_1, \Sigma_1)}{g_1(x)} > \frac{p(x | \mu_0, \Sigma_0)}{g_0(x)} \quad \text{then} \quad y = 1
\]

\[
\text{else} \quad y = 0
\]

- **Posterior of a class** – choose the class with better posterior probability

\[
p(y = 1 | x) > p(y = 0 | x) \quad \text{then} \quad y = 1
\]

\[
\text{else} \quad y = 0
\]

\[
p(y = 1 | x) = \frac{p(x | \mu_1, \Sigma_1) p(y = 1)}{p(x | \mu_0, \Sigma_0) p(y = 0) + p(x | \mu_1, \Sigma_1) p(y = 1)}
\]
QDA: Quadratic decision boundary

Contours of class-conditional densities
QDA: Quadratic decision boundary
Linear discriminant analysis (LDA)

- When covariances are the same
 \[x \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[x \sim N(\mu_1, \Sigma), \ y = 1 \]
LDA: Linear decision boundary
LDA: linear decision boundary
Naïve Bayes classifier

• A generative classifier model with an additional simplifying assumption:
 – All input attributes are conditionally independent of each other given the class.

So we have:

\[p(x, y) = p(x \mid y) p(y) \]

\[p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y) \]
Learning parameters of the model

Much simpler density estimation problems

• We need to learn:
 \[p(x \mid y = 0) \text{ and } p(x \mid y = 1) \text{ and } p(y) \]

• Because of the assumption of the conditional independence we need to learn:

 for every variable \(i \): \(p(x_i \mid y = 0) \text{ and } p(x_i \mid y = 1) \)

• Much easier if the number of input attributes is large

• Also, the model gives us a flexibility to represent input attributes different of different forms !!!

• E.g. one attribute can be modeled using the Bernoulli, the other as Gaussian density, or as a Poisson distribution
Making a class decision for the Naïve Bayes

Discriminant functions

- **Likelihood of data** – choose the class that explains the input data \((x)\) better (likelihood of the data)

\[
\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) > \prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \quad \text{then } y=1
\]

\[
g_1(x) > g_0(x)
\]

- **Posterior of a class** – choose the class with better posterior probability

\[
p(y = 1 \mid x) > p(y = 0 \mid x) \quad \text{then } y=1
\]

\[
p(y = 1 \mid x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
p(y = 0 \mid x) = 1 - p(y = 1 \mid x)
\]

\[
g_0(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 1)}
\]

\[
g_1(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
g_0(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
g_1(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
g_0(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
g_1(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]

\[
g_0(x) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{0,i}) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i}) \right) p(y = 1)}
\]
Back to logistic regression

- **Two models with linear decision boundaries:**
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices

\[
x \sim N(\mu_0, \Sigma) \quad \text{for} \quad y = 0
\]

\[
x \sim N(\mu_1, \Sigma) \quad \text{for} \quad y = 1
\]

- **Two models are related !!!**
 - When we have 2 Gaussians with the same covariance matrix the probability of \(y \) given \(x \) has the form of a logistic regression model !!!

\[
p(y = 1|x, \mu_0, \mu_1, \Sigma) = g(w^T x)
\]
When is the logistic regression model correct?

• **Members of the exponential family can be often more naturally described as**

\[f(x | \theta, \varphi) = h(x, \varphi) \exp \left\{ \frac{\theta^T x - A(\theta)}{a(\varphi)} \right\} \]

- **\(\theta \)** - A location parameter
- **\(\varphi \)** - A scale parameter

• **Claim:** A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have **the same scale factor** \(\varphi \)

• **Very powerful result !!!!**
 - We can represent posteriors of many distributions with the same small network
Linear units

Linear regression

\[f(x) = w^T x \]

Gradient update:

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i))x_i \]

Online: \[w \leftarrow w + \alpha (y - f(x))x \]

Logistic regression

\[f(x) = p(y = 1 | x, w) = g(w^T x) \]

Gradient update:

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i))x_i \]

Online: \[w \leftarrow w + \alpha (y - f(x))x \]
Gradient-based learning

- The **same simple gradient update rule** derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the **log-likelihood** measure the function models and the models for the output selection fit together:
 - **Linear model + Gaussian noise**
 \[y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]
 - **Logistic + Bernoulli**
 \[y = \text{Bernoulli}(\theta) \]
 \[\theta = p(y = 1 \mid x) = g(w^T x) \]
Generalized linear models (GLIM)

Assumptions:
• The conditional mean (expectation) is:
 \[\mu = f(w^T x) \]
 – Where \(f(.) \) is a **response function**
• Output \(y \) is characterized by an exponential family distribution with a conditional mean \(\mu \)

Examples:
 – Linear model + Gaussian noise
 \[y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]
 – Logistic + Bernoulli
 \[y \approx \text{Bernoulli}(\theta) \]
 \[\theta = g(w^T x) = \frac{1}{1 + e^{-w^T x}} \]
Generalized linear models

- A canonical response functions $f(\cdot)$:
 - encoded in the distribution

$$p(x \mid \theta, \phi) = h(x, \phi) \exp \left\{ \frac{\theta^T x - A(\theta)}{a(\phi)} \right\}$$

- Leads to a simple gradient form
- Example: Bernoulli distribution

$$p(x \mid \mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ \log \left(\frac{\mu}{1 - \mu} \right)x + \log(1 - \mu) \right\}$$

$$\theta = \log \left(\frac{\mu}{1 - \mu} \right) \quad \mu = \frac{1}{1 + e^{-\theta}}$$

- Logistic function matches the Bernoulli
When does the logistic regression fail?

- Quadratic decision boundary is needed
When does the logistic regression fail?

- Another example of a non-linear decision boundary
Non-linear extension of logistic regression

- use feature (basis) functions to model nonlinearities
- the same trick as used for the linear regression

Linear regression

\[f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x) \]

Logistic regression

\[f(x) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(x)) \]

\(\phi_j(x) \) - an arbitrary function of \(x \)
Evaluation of classifiers
Evaluation

For any data set we use to test the classification model on we can build a **confusion matrix:**

- Counts of examples with:
 - class label ω_j that are classified with a label α_i

<table>
<thead>
<tr>
<th>predict</th>
<th>target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

For any data set we use to test the model we can build a **confusion matrix**:

<table>
<thead>
<tr>
<th>predict</th>
<th>target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

Error: ?
Evaluation

For any data set we use to test the model we can build a confusion matrix:

<table>
<thead>
<tr>
<th>predict</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>

Error: $= \frac{37}{231}$

Accuracy $= 1 - \text{Error} = \frac{194}{231}$
Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

<table>
<thead>
<tr>
<th>predict</th>
<th>target $\omega = 1$</th>
<th>target $\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)
Additional statistics

• Sensitivity (recall)

\[SENS = \frac{TP}{TP + FN} \]

• Specificity

\[SPEC = \frac{TN}{TN + FP} \]

• Positive predictive value (precision)

\[PPT = \frac{TP}{TP + FP} \]

• Negative predictive value

\[NPV = \frac{TN}{TN + FN} \]
Binary classification: additional statistics

- **Confusion matrix**

<table>
<thead>
<tr>
<th>predict</th>
<th>target</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
PPV &= \frac{140}{150} \\
NPV &= \frac{180}{200} \\
SENS &= \frac{140}{160} \\
SPEC &= \frac{180}{190}
\end{align*}
\]

Row and column quantities:
- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)
Binary decisions: Receiver Operating Curves

- **Probabilities:**
 - **SENS**
 - **SPEC**

\[
p(x > x^* \mid \mathbf{x} \in \omega_2)\]

\[
p(x < x^* \mid \mathbf{x} \in \omega_1)\]
Receiver Operating Characteristic (ROC)

- ROC curve plots:
 \[SN = p(x > x^* \mid x \in \omega_2) \]
 \[1-SP = p(x > x^* \mid x \in \omega_1) \]
 for different \(x^* \)

\[SENS = p(x > x^* \mid x \in \omega_2) \]
ROC curve

Case 1

Case 2

Case 3

\[p(x > x^* \mid x \in \omega_2) \]

\[p(x > x^* \mid x \in \omega_1) \]
Receiver operating characteristic

- **ROC**
 - shows the discriminability between the two classes under different decision biases

- **Decision bias**
 - can be changed using different loss function
Back to classification models
Discriminant functions
Discriminant functions

\[g_1(x) \leq g_0(x) \]
Discriminant functions

\[g_1(x) \geq g_0(x) \]

\[g_1(x) \leq g_0(x) \]
Discriminant functions

- Define decision boundary

\[g_1(x) \geq g_0(x) \]

\[g_1(x) = g_0(x) \]

\[g_1(x) \leq g_0(x) \]
Quadratic decision boundary

\[g_1(x) \geq g_0(x) \]

\[g_1(x) \leq g_0(x) \]

\[g_1(x) = g_0(x) \]
Logistic regression model

- Defines a linear decision boundary
- Discriminant functions:
 \[g_1(x) = g(w^T x) \quad \quad g_0(x) = 1 - g(w^T x) \]
- where \(g(z) = 1/(1 + e^{-z}) \) - is a logistic function

\[f(x, w) = g_1(w^T x) = g(w^T x) \]
Logistic function

\[g(z) = \frac{1}{1 + e^{-z}} \]

- Is also referred to as a **sigmoid function**
- Replaces the threshold function with smooth switching
- Takes a real number and outputs the number in the interval \([0,1]\)
Generative approach to classification

Idea:

1. Represent and learn the distribution \(p(x, y) \)
2. Use it to define probabilistic discriminant functions

E.g. \(g_o(x) = p(y = 0 \mid x) \quad g_1(x) = p(y = 1 \mid x) \)

Typical model \(p(x, y) = p(x \mid y) p(y) \)

- \(p(x \mid y) = \text{Class-conditional distributions (densities)} \)
 - binary classification: two class-conditional distributions
 \(p(x \mid y = 0) \quad p(x \mid y = 1) \)
- \(p(y) = \text{Priors on classes} - \) probability of class \(y \)
 - binary classification: Bernoulli distribution
 \(p(y = 0) + p(y = 1) = 1 \)
Quadratic discriminant analysis (QDA)

Model:

- **Class-conditional distributions**
 - **multivariate normal distributions**
 \[
 \mathbf{x} \sim N(\mu_0, \Sigma_0) \quad \text{for} \quad y = 0
 \]
 \[
 \mathbf{x} \sim N(\mu_1, \Sigma_1) \quad \text{for} \quad y = 1
 \]

 - Multivariate normal \(\mathbf{x} \sim N(\mu, \Sigma) \)
 \[
p(x | \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]
 \]

- **Priors on classes (class 0,1)** \(y \sim Bernoulli \)
 - **Bernoulli distribution**
 \[
p(y, \theta) = \theta^y (1-\theta)^{1-y} \quad y \in \{0,1\}
 \]
QDA
2 Gaussian class-conditional densities
QDA: Quadratic decision boundary
Linear discriminant analysis (LDA)

- When covariances are the same:
 \[x \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[x \sim N(\mu_1, \Sigma), \ y = 1 \]
LDA: Linear decision boundary
LDA: linear decision boundary
Logistic regression vs LDA

• Two models with linear decision boundaries:
 – Logistic regression
 – Generative model with 2 Gaussians with the same covariance matrices

\[x \sim N(\mu_0, \Sigma) \quad \text{for} \quad y = 0 \]
\[x \sim N(\mu_1, \Sigma) \quad \text{for} \quad y = 1 \]

• Two models are related !!!
 – When we have 2 Gaussians with the same covariance matrix the probability of \(y \) given \(x \) has the form of a logistic regression model !!!

\[p(y = 1 \mid x, \mu_0, \mu_1, \Sigma) = g(w^T x) \]
When is the logistic regression model correct?

- **Members of the exponential family can be often more naturally described as**

\[
 f(x | \theta, \phi) = h(x, \phi) \exp \left\{ \frac{\theta^T x - A(\theta)}{a(\phi)} \right\}
\]

\[\theta\] - A location parameter \[\phi\] - A scale parameter

- **Claim**: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor \[\phi\]

- **Very powerful result !!!!**
 - We can represent posteriors of many distributions with the same small network
Linear units

Linear regression

\[f(x) = w^T x \]

Logistic regression

\[f(x) = p(y = 1 | x, w) = g(w^T x) \]

\[\text{Gradient update:} \]

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i)) x_i \]

Online: \[w \leftarrow w + \alpha (y - f(x)) x \]

The same

\[w \leftarrow w + \alpha \sum_{i=1}^{n} (y_i - f(x_i)) x_i \]

Online: \[w \leftarrow w + \alpha (y - f(x)) x \]
Gradient-based learning

- The **same simple gradient update rule** derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the **log-likelihood** measure the function models and the models for the output selection fit together:
 - **Linear model + Gaussian noise**
 \[
 y = w^T x + \varepsilon \\
 \varepsilon \sim N(0, \sigma^2)
 \]
 - **Logistic + Bernoulli**
 \[
 y \sim \text{Bern}(\theta) \\
 \theta = p(y = 1 \mid x) = g(w^T x)
 \]
Generalized linear models (GLIM)

Assumptions:
- The conditional mean (expectation) is: \(\mu = f(w^T x) \)
 - \(f(.) \) is a response (or a link) function
- Output \(y \) is characterized by an exponential family distribution with mean \(\mu = f(w^T x) \)

Examples:
- Linear model + Gaussian noise
 \(y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \)
 \(y \sim N(w^T x, \sigma^2) \)
- Logistic + Bernoulli
 \(y \sim \text{Bern}(\theta) \sim \text{Bern}(g(w^T x)) \)
 \(\theta = g(w^T x) = \frac{1}{1 + e^{-w^T x}} \)
Generalized linear models (GLMs)

- A canonical response functions $f(.)$:
 - encoded in the distribution

$$p(x \mid \theta, \phi) = h(x, \phi) \exp \left\{ \frac{\theta^T x - A(\theta)}{a(\phi)} \right\}$$

- Leads to a simple gradient form
- Example: Bernoulli distribution

$$p(x \mid \mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ \log \left(\frac{\mu}{1 - \mu} \right) x + \log(1 - \mu) \right\}$$

$$\theta = \log \left(\frac{\mu}{1 - \mu} \right) \quad \mu = \frac{1}{1 + e^{-\theta}}$$

- Logistic function matches the Bernoulli
Non-linear extension of logistic regression

- use **feature (basis) functions** to model **nonlinearities**
 - the same trick as used for the linear regression

Linear regression

\[
f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x)
\]

Logistic regression

\[
f(x) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(x))
\]

\(\phi_j(x)\) - an arbitrary function of \(x\)
Similarly to the linear regression we can penalize the logistic regression or other GLM models for their complexity

- **L1 (lasso) regularization penalty**
- **L2 (ridge) regularization penalty**

- **Typically:** the optimization of weights \(w \) looks as follows

\[
\min_w \quad Loss(D, w) + Q(w)
\]

- **\(Loss(D, w) \) functions:**
 - Mean squared error
 - Negative log-likelihood

- **Regularization penalty** \(Q(w) \): L1, L2 or a combination
When does the logistic regression fail?

- Quadratic decision boundary is needed
When does the logistic regression fail?

- Another example of a non-linear decision boundary