Reinforcement learning II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Reinforcement learning

- **We want to learn the control policy:** \(\pi : X \rightarrow A \)
- We see examples of \(x \) (but outputs \(a \) are not given)
- Instead of \(a \) we get a feedback (reinforcement, reward) from a critic quantifying how good the selected output was

- The reinforcements may not be deterministic
- **Goal:** find \(\pi : X \rightarrow A \) with the best expected reinforcements
Gambling example.

- **Game:** 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage $1
 - If I win I get $1, otherwise I lose my bet

- **RL model:**
 - **Input:** X – a coin chosen for the next toss,
 - **Action:** A – choice of head or tail,
 - **Reinforcements:** $\{1, -1\}$

- **A policy** $\pi : X \rightarrow A$

 Example: $\pi : \begin{array}{|c|c|} \hline \text{Coin1} & \text{head} \\ \text{Coin2} & \text{tail} \\ \text{Coin3} & \text{head} \\ \end{array}$
Gambling example

• **RL model:**
 – **Input:** X – a coin chosen for the next toss,
 – **Action:** A – choice of head or tail,
 – **Reinforcements:** $\{1, -1\}$
 – **A policy** π:

 \[
 \begin{array}{l|l}
 \text{Coin1} & \text{head} \\
 \text{Coin2} & \text{tail} \\
 \text{Coin3} & \text{head} \\
 \end{array}
 \]

• **Learning goal:** find $\pi : X \rightarrow A$

 maximizing future expected profits

 $E(\sum_{t=0}^{\infty} \gamma^t r_t)$

 γ a discount factor = present value of money
Agent navigation example.

- **Agent navigation in the Maze:**
 - 4 moves in compass directions
 - Effects of moves are stochastic – we may wind up in other than intended location with non-zero probability
 - **Objective:** reach the goal state in the shortest expected time
Agent navigation example

- **The RL model:**
 - **Input:** \(X \) – position of an agent
 - **Output:** \(A \) – a move
 - **Reinforcements:** \(R \)
 - -1 for each move
 - +100 for reaching the goal
 - **A policy:** \(\pi : X \rightarrow A \)
 - \(\pi : \) Position 1 \(\rightarrow right \)
 - Position 2 \(\rightarrow right \)
 - ...
 - Position 20 \(\rightarrow left \)

- **Goal:** find the policy maximizing future expected rewards

 \[
 E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right)
 \]
Objectives of RL learning

• **Objective:**
 Find a mapping \(\pi^* : X \rightarrow A \)
 That maximizes some combination of future reinforcements (rewards) received over time

• **Valuation models** (quantify how good the mapping is):
 – **Finite horizon model**
 \[
 E\left(\sum_{t=0}^{T} r_t \right) \quad \text{Time horizon: } T > 0
 \]
 – **Infinite horizon discounted model**
 \[
 E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right) \quad \text{Discount factor: } 0 < \gamma < 1
 \]
 – **Average reward**
 \[
 \lim_{T \to \infty} \frac{1}{T} E\left(\sum_{t=0}^{T} r_t \right)
 \]
RL with immediate rewards

- **Expected reward**

\[
E(\sum_{t=0}^{\infty} \gamma^t r_t) = E(r_0) + E(\gamma r_1) + E(\gamma^2 r_2) + \ldots
\]

- **Optimizing the expected reward**

\[
\max_{\pi} E(\sum_{t=0}^{\infty} \gamma^t r_t) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t E(r_t) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t R(\pi) = \max_{\pi} R(\pi)(\sum_{t=0}^{\infty} \gamma^t)
\]

\[
= (\sum_{t=0}^{\infty} \gamma^t) \max_{\pi} R(\pi)
\]

\[
\max_{\pi} R(\pi) = \max_{\pi} \sum_x R(x, \pi(x)) P(x) = \sum_x P(x)[\max_{\pi(x)} R(x, \pi(x))]
\]

- **Optimal strategy**: \(\pi^* : X \rightarrow A \)

\[
\pi^*(x) = \arg \max_a R(x, a)
\]
RL with immediate rewards

- **Problem:** In the RL framework we do not know $R(x, a)$
 - The expected reward for performing action a at input x
- **Solution:**
 - For each input x try different actions a
 - Estimate $R(x, a)$ using the average of observed rewards
 \[
 \tilde{R}(x, a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_{i}^{x,a}
 \]
 - Action choice $\pi(x) = \arg \max_a \tilde{R}(x, a)$
 - Accuracy of the estimate: statistics (Hoeffding’s bound)
 \[
 P\left(\left| \tilde{R}(x, a) - R(x, a) \right| \geq \varepsilon \right) \leq \exp\left[-\frac{2\varepsilon^2 N_{x,a}}{(r_{\max} - r_{\min})^2}\right] \leq \delta
 \]
 - Number of samples:
 \[
 N_{x,y} \geq \frac{(r_{\max} - r_{\min})^2}{2\varepsilon^2} \ln \frac{1}{\delta}
 \]
RL with immediate rewards

- **On-line (stochastic approximation)**
 - An alternative way to estimate $R(x, a)$

- **Idea:**
 - choose action a for input x and observe a reward $r^{x,a}$
 - Update an estimate

 $$\tilde{R}(x, a) \leftarrow (1 - \alpha)\tilde{R}(x, a) + \alpha r^{x,a}$$

 α - a learning rate

- **Convergence property:** The approximation converges in the limit for an appropriate learning rate schedule.

- **Assume:** $\alpha(n(x, a))$ - is a learning rate for nth trial of (x, a) pair

- Then the converge is assured if:

 1. $\sum_{i=1}^{\infty} \alpha(i) = \infty$
 2. $\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$
Exploration vs. Exploitation

- **Uniform exploration**
 - Choose the “current” best choice with probability $1 - \varepsilon$
 $$\hat{\pi}(x) = \arg \max_{a \in A} \tilde{R}(x, a)$$
 - All other choices are selected with a uniform probability
 $$p(a \mid x) = \frac{\varepsilon}{|A| - 1}$$

- **Boltzman exploration**
 - The action is chosen randomly but proportionally to its current expected reward estimate
 $$p(a \mid x) = \frac{\exp[\tilde{R}(x, a) / T]}{\sum_{a' \in A} \exp[\tilde{R}(x, a') / T]}$$

 T – is temperature parameter. **What does it do?**
RL with delayed rewards

- **Agent navigation in the Maze:**
 - 4 moves in compass directions
 - Effects of moves are stochastic – we may wind up in other than intended location with non-zero probability
 - **Objective:** reach the goal state in the shortest time
Learning with delayed rewards

- Actions, in addition to immediate rewards affect the next state of the environment and thus indirectly also future rewards
- We need a model to represent environment changes
- The model we use is called **Markov decision process (MDP)**
 - Frequently used in AI, OR, control theory
 - **Markov assumption**: next state depends on the previous state and action, and not states (actions) in the past

```
action_{t-1} -> state_{t-1} -> state_t
  |                          |
  | reward_{t-1}            |
```

CS 2750 Machine Learning
Markov decision process

Formal definition: 4-tuple \((S, A, T, R)\)

- **A set of states** \(S\) \((X)\) locations of a robot
- **A set of actions** \(A\) move actions
- **Transition model** \(S \times A \times S \rightarrow [0,1]\) where can I get with different moves
- **Reward model** \(S \times A \times S \rightarrow \mathbb{R}\) reward/cost for a transition
MDP problem

- We want to find the best policy $\pi^* : S \rightarrow A$

- **Value function** (V) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

$$E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right)$$

It:
1. combines future rewards over a trajectory
2. combines rewards for multiple trajectories (through expectation-based measures)
Value of a policy for MDP

• Assume a fixed policy \(\pi : S \rightarrow A \)

• How to compute the value of a policy under infinite horizon discounted model?

Fixed point equation:

\[
V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'| s, \pi(s)) V^\pi(s')
\]

- expected one step reward for the first action
- expected discounted reward for following the policy for the rest of the steps

\[
v = r + Uv \quad \Rightarrow \quad v = (I - U)^{-1} r
\]

- For a finite state space— we get a set of linear equations
Optimal policy

• The value of the optimal policy

\[V^*(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^*(s') \right] \]

expected one step reward for the first action
expected discounted reward for following the opt. policy for the rest of the steps

Value function mapping form:

\[V^*(s) = (HV^*) (s) \]

• The optimal policy:

\[\pi^* : S \rightarrow A \]

\[\pi^*(s) = \arg \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^*(s') \right] \]
Computing optimal policy

Dynamic programming. Value iteration:
- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

Value iteration (\(\varepsilon \))

initialize \(V \);; \(V \) is vector of values for all states

repeat

- set \(V' \leftarrow V \)
- set \(V \leftarrow HV \)

until \(\|V' - V\|_\infty \leq \varepsilon \)

output \(\pi^*(s) = \arg \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s') \right] \)
Reinforcement learning of optimal policies

• **In the RL framework we do not know the MDP model !!!**
• **Goal:** learn the optimal policy
 \[\pi^* : S \rightarrow A \]
• **Two basic approaches:**
 – **Model based learning**
 • Learn the MDP model (probabilities, rewards) first
 • Solve the MDP afterwards
 – **Model-free learning**
 • Learn how to act directly
 • No need to learn the parameters of the MDP
 – A number of clones of the two in the literature
Model-based learning

- We need to learn **transition probabilities** and **rewards**
- **Learning of probabilities**
 - ML or Bayesian parameter estimates
 - Use counts
 \[
 \tilde{P}(s'|s,a) = \frac{N_{s,a,s'}}{N_{s,a}} \quad N_{s,a} = \sum_{s' \in S} N_{s,a,s'}
 \]
- **Learning rewards**
 - Similar to learning with immediate rewards
 \[
 \tilde{R}(s,a) = \frac{1}{N_{s,a}} \sum_{i=1}^{N_{s,a}} r_{i}^{s,a}
 \]
- **Problem:** on-line update of the policy
 - would require us to solve the MDP after every update !!
Model free learning

• **Motivation:** value function update (value iteration):

\[
V(s) \leftarrow \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a)V(s') \right]
\]

• Let

\[
Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a)V(s')
\]

• Then

\[
V(s) \leftarrow \max_{a \in A} Q(s, a)
\]

• Note that the update can be defined purely in terms of Q-functions

\[
Q(s, a) \leftarrow R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a) \max_{a'} Q(s', a')
\]
Q-learning

- **Q-learning** uses the Q-value update idea
 - But relies on a stochastic (on-line, sample by sample) update

\[
Q(s, a) \leftarrow R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) \max_{a'} Q(s', a')
\]

is replaced with

\[
\hat{Q}(s, a) \leftarrow (1 - \alpha)\hat{Q}(s, a) + \alpha \left(r(s, a) + \gamma \max_{a'} \hat{Q}(s', a') \right)
\]

- \(r(s, a) \) - reward received from the environment after performing an action \(a \) in state \(s \)
- \(s' \) - new state reached after action \(a \)
- \(\alpha \) - learning rate, a function of \(N_{s,a} \)
 - a number of times \(a \) executed at \(s \)
Q-learning

The on-line update rule is applied repeatedly during direct interaction with an environment.

Q-learning

initialize $Q(s,a) = 0$ for all s,a pairs

observe current state s

repeat

 select action a ; use some exploration/exploitation schedule

 receive reward r

 observe next state s'

 update $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$

 set s to s'

end repeat
Q-learning convergence

The **Q-learning is guaranteed to converge** to the optimal Q-values under the following conditions:

- Every state is visited and every action in that state is tried infinite number of times

 – This is assured via exploration/exploitation schedule

- The sequence of learning rates for each $Q(s,a)$ satisfies:

 1. $\sum_{i=1}^{\infty} \alpha(i) = \infty$

 2. $\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$

$\alpha(n(s,a))$ - Is the learning rate for the nth trial of (s,a)
Exploration vs. Exploitation

• In the RL with the delayed rewards
 – At any point in time the learner has an estimate of $\hat{Q}(x, a)$ for any state action pair

• Dilemma:
 – Should the learner use the current best choice of action (exploitation)
 \[\hat{\pi}(x) = \arg \max_{a \in A} \hat{Q}(x, a) \]
 – Or choose other action a and further improve its estimate of $\hat{Q}(x, a)$ (exploration)

• Exploration/exploitation strategies
 – Uniform exploration
 – Boltzman exploration
Q-learning speed-ups

• The basic Q-learning rule updates may propagate distant (delayed) rewards very slowly

Example:

• **Goal**: a high reward state
• To make the correct decision we need all Q-values for the current position to be good
• **Problem**: in each run we back-propagate values only ‘one-step’ back. It takes multiple trials to back-propagate values multiple steps.
Q-learning speed-ups

- **Remedy:** Backup values for a larger number of steps

Rewards from applying the policy

\[q_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i} \]

We can substitute (immediate rewards with n-step rewards):

\[q_t^n = \sum_{i=0}^{n} \gamma^i r_{t+i} + \gamma^{n+1} \max_{a'} Q_{t+n}(s', a') \]

Postpone the update for \(n \) steps and update with a longer trajectory rewards

\[Q_{t+n+1}(s, a) \leftarrow Q_{t+n}(s, a) + \alpha \left(q_t^n - Q_{t+n}(s, a) \right) \]

Problems:
- larger variance
- exploration/exploitation switching
- wait \(n \) steps to update
Q-learning speed-ups

• One step vs. n-step backup

Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update
Q-learning speed-ups

- **Temporal difference (TD) method**
 - Remedy of the wait n-steps problem
 - Partial back-up after every simulation step
 - Similar idea: weather forecast adjustment

Different versions of this idea have been implemented
RL successes

• Reinforcement learning is relatively simple
 – On-line techniques can track non-stationary environments and adapt to its changes

• Successful applications:
 – TD Gammon – learned to play backgammon on the championship level
 – Elevator control
 – Dynamic channel allocation in mobile telephony
 – Robot navigation in the environment