Ensamble methods: Boosting

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Schedule

Final exam:
• April 18: 1:00-2:15pm, in-class

Term projects
• April 23 & April 25: at 1:00 - 2:30pm
 in CS seminar room
Ensemble methods

- **Mixture of experts**
 - Multiple ‘base’ models (classifiers, regressors), each covers a different part (region) of the input space

- **Committee machines:**
 - Multiple ‘base’ models (classifiers, regressors), each covers the complete input space
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - **Goal:** Improve the accuracy of the ‘base’ model
 - **Methods:**
 - Bagging
 - Boosting
 - Stacking (not covered)
Bagging algorithm

• **Training**
 – In each iteration t, $t=1,…T$
 • Randomly sample with replacement N samples from the training set
 • Train a chosen “base model” (e.g. neural network, decision tree) on the samples

• **Test**
 – For each test example
 • Start all trained base models
 • Predict by combining results of all T trained models:
 – **Regression**: averaging
 – **Classification**: a majority vote
Simple Majority Voting

Test examples

Class “yes”
Class “no”
Analysis of Bagging

- **Expected error** = **Bias** + **Variance**
 - *Expected error* is the expected discrepancy between the estimated and true function

 \[
 E \left[(\hat{f}(X) - E[f(X)])^2 \right]
 \]

 - *Bias* is squared discrepancy between averaged estimated and true function

 \[
 \left(E[\hat{f}(X)] - E[f(X)] \right)^2
 \]

 - *Variance* is expected divergence of the estimated function vs. its average value

 \[
 E \left[(\hat{f}(X) - E[\hat{f}(X)])^2 \right]
 \]
When Bagging works?
Under-fitting and over-fitting

- **Under-fitting:**
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)

- **Over-fitting:**
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)
When Bagging works

• **Main property of Bagging** (proof omitted)
 – Bagging **decreases variance** of the base model without changing the bias!!!
 – Why? averaging!

• **Bagging typically helps**
 – When applied with an **over-fitted base model**
 • High dependency on actual training data

• **It does not help much**
 – High bias. When the base model is robust to the changes in the training data (due to sampling)
Boosting

- **Mixture of experts**
 - One expert per region
 - Expert switching

- **Bagging**
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are learned independently

- **Boosting**
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent
Boosting. Theoretical foundations.

- **PAC:** Probably Approximately Correct framework
 - $(\varepsilon - \delta)$ solution
- **PAC learning:**
 - Learning with pre-specified error ε and confidence δ parameters
 - the probability that the misclassification error is larger than ε is smaller than δ

\[P(ME(c) > \varepsilon) \leq \delta \]

- **Accuracy (1-ε):** Percent of correctly classified samples in test
- **Confidence (1-δ):** The probability that in one experiment some accuracy will be achieved

\[P(Acc(c) > 1 - \varepsilon) > (1 - \delta) \]
PAC Learnability

Strong (PAC) learnability:
- There exists a learning algorithm that **efficiently** learns the classification with a pre-specified accuracy and confidence

Strong (PAC) learner:
- A learning algorithm P that given an arbitrary
 - classification error $\varepsilon (< 1/2)$, and
 - confidence $\delta (<1/2)$
- Outputs a classifier that satisfies this parameters
 - In other words gives:
 - classification accuracy $> (1-\varepsilon)$
 - confidence probability $> (1- \delta)$
 - And runs in time polynomial in $1/ \delta, 1/\varepsilon$
 - Implies: number of samples N is polynomial in $1/ \delta, 1/\varepsilon$
Weak Learner

Weak learner:

- A learning algorithm (learner) W that gives:
 - a classification accuracy $> 1 - \varepsilon_o$
 - with probability $> 1 - \delta_o$
- For some **fixed and uncontrollable**
 - error $\varepsilon_o (<1/2)$
 - confidence $\delta_o (<1/2)$

and this on an arbitrary distribution of data entries
Weak learnability = Strong (PAC) learnability

• Assume there exists a weak learner
 – it is better that a random guess (> 50 %) with confidence higher than 50 % on any data distribution

• Question:
 – Is the problem also PAC-learnable?
 – Can we generate an algorithm P that achieves an arbitrary (ε-δ) accuracy?

• Why is important?
 – Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 – Can we improve performance to achieve any pre-specified accuracy (confidence)?
Weak=Strong learnability!!!

• Proof due to R. Schapire
 An arbitrary \((\epsilon-\delta)\) improvement is possible

Idea: combine multiple weak learners together
 – Weak learner \(W\) with confidence \(\delta_o\) and maximal error \(\epsilon_o\)
 – It is possible:
 • To improve (boost) the confidence
 • To improve (boost) the accuracy
 by training different weak learners on slightly different datasets
Boosting accuracy
Training

Distribution samples

Correct classification
Wrong classification

H_1 and H_2 classify differently
Boosting accuracy

• **Training**
 – Sample randomly from the distribution of examples
 – Train hypothesis H_1 on the sample
 – Evaluate accuracy of H_1 on the distribution
 – Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2.
 – Train H_3 on samples from the distribution where H_1 and H_2 classify differently

• **Test**
 – For each example, decide according to the majority vote of H_1, H_2 and H_3
Theorem

• If each hypothesis has an error $< \varepsilon_o$, the final ‘voting’ classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 - 2\varepsilon_o^3$

• Accuracy improved !!!!

• Apply recursively to get to the target accuracy !!!!
Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost

• **The key result:** we can improve both the accuracy and confidence

• **Problems with the theoretical algorithm**
 – A good (better than 50 %) classifier on all distributions and problems
 – We cannot properly sample from data-distribution
 – The method requires a large training set

• **Solution to the sampling problem:**
 – Boosting by sampling
 • **AdaBoost** algorithm and variants
AdaBoost

- **AdaBoost**: boosting by sampling

- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)

- **Regression** (Drucker; 1997)
 - AdaBoostR
AdaBoost

• **Given:**
 – A training set of \(N \) examples (attributes + class label pairs)
 – A “base” learning model (e.g. a decision tree, a neural network)

• **Training stage:**
 – Train a sequence of \(T \) “base” models on \(T \) different sampling distributions defined upon the training set (\(D \))
 – A sample distribution \(D_t \) for building the model \(t \) is constructed by modifying the sampling distribution \(D_{t-1} \) from the \((t-1) \)th step.
 • Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

• **Application (classification) stage:**
 – Classify according to the **weighted majority** of classifiers
AdaBoost training

Training data → D₁ → Distribution → Learn → Model 1 → Test → Errors 1

D₁ → Distribution → Learn → Model 1 → Test → Errors 1

D₂ → Distribution → Learn → Model 2 → Test → Errors 2

... → Distribution → Learn → Model T → Test → Errors T
AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1/N$ for the first step ($t=1$)

- Take K samples from the training set according to D_t

- Train a classifier h_t on the samples

- Calculate the error ε_t of h_t:

 $\varepsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$

- Classifier weight:

 $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$

- New sampling distribution

 $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \left\{ \begin{array}{ll} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{array} \right.$

 Norm. constant
AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification
 - NN as week learners
AdaBoost: Sampling Probabilities
AdaBoost classification

• We have \(T\) different classifiers \(h_t\)
 – weight \(w_t\) of the classifier is proportional to its accuracy on the training set
 \[
 w_t = \log(1/\beta_t) = \log((1 - \varepsilon_t)/\varepsilon_t)
 \]
 \[
 \beta_t = \varepsilon_t/(1-\varepsilon_t)
 \]

• Classification:
 For every class \(j=0,1\)
 • Compute the sum of weights \(w\) corresponding to ALL classifiers that predict class \(j\);
 • Output class that correspond to the maximal sum of weights (weighted majority)
 \[
 h_{final}(x) = \arg \max_j \sum_{t:h_t(x)=j} w_t
 \]
Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

- Weighted majority “yes”

\[
0.7 - 0.5 = +0.2
\]

- The final choose is “yes” + 1
What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples
- **Boosting can:**
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- **Train versus test errors performance:**
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers
Boosting. Error performances

![Graph showing error performances for boosting.]
Model Averaging

• An alternative to combine multiple models: can be used for supervised and unsupervised frameworks

• For example:
 – Likelihood of the data can be expressed by averaging over the multiple models
 \[
 P(D) = \sum_{i=1}^{N} P(D | M = m_i)P(M = m_i)
 \]
 – Prediction:
 \[
 P(y | x) = \sum_{i=1}^{N} P(y | x, M = m_i)P(M = m_i)
 \]