Types of learning

- **Supervised learning**
 - Learning mapping between input \(x \) and desired output \(y \)
 - Teacher gives me y’s for the learning purposes
- **Unsupervised learning**
 - Learning relations between data components
 - No specific outputs given by a teacher
- **Reinforcement learning**
 - Learning mapping between input \(x \) and desired output \(y \)
 - Critic does not give me y’s but instead a signal (reinforcement) of how good my answer was
- **Other types of learning:**
 - Concept learning, explanation-based learning, etc.
A learning system: basic cycle

1. **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)
2. **Model selection:**
 - **Select a model** or a set of models (with parameters)

 E.g. \(y = ax + b \)
3. **Choose the objective function**
 - **Squared error** \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. **Learning:**
 - **Find the set of parameters optimizing the error function**
 - The model and parameters with the smallest error
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

\[
\sum_{i=1}^{n} (y_i - f(x_i))^2
\]
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, ..., d_n\} \)
2. Model selection:
 – Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 – Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 • Find the set of parameters optimizing the error function
 – The model and parameters with the smallest error

But there are problems one must be careful about …
Learning

Problem
• We fit the model based on past examples observed in D
• But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model
Training error: $\text{Error}(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

True (generalization) error (over the whole population):
$E_{(x,y)}[(y - f(x))^2]$ Mean squared error

Training error tries to approximate the true error !!!!
Does a good training error imply a good generalization error ?

Overfitting

• Assume we have a set of 10 points and we consider polynomial functions as our possible models
Overfitting

- Fitting a linear function with the square error
- Error is nonzero

![Graph](image1)

Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

![Graph](image2)
Overfitting

• Is it always good to minimize the error of the observed data?

Overfitting

• For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
• Is it always good to minimize the training error?
Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO!!
- **More important:** How do we perform on the unseen data?

Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)
How to evaluate the learner’s performance?

• **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}[(y - f(x))^2] \]
 • But it cannot be computed exactly
 • **Sample mean only approximates the true mean**

 • Optimizing (mean) training error can lead to the overfit, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
 • So how to test the generalization error?

How to evaluate the learner’s performance?

• **Generalization error** is the true error for the population of examples we would like to optimize
• **Sample mean only approximates it**
• **Two ways to assess the generalization error is:**
 – **Theoretical:** Law of Large numbers
 • statistical bounds on the difference between true and sample mean errors
 – **Practical:** Use a separate data set with \(m \) data samples to test the model
 • **(Mean) test error**
 \[\frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2 \]
Testing of learning models

- **Simple holdout method**
 - Divide the data to the training and test data

 ![Diagram showing the process of data division and model evaluation]

 - Typically 2/3 training and 1/3 testing

Basic experimental setup to test the learner’s performance

1. Take a dataset D and divide it into:
 - Training data set
 - Testing data set

2. Use the training set and your favorite ML algorithm to train the learner

3. Test (evaluate) the learner on the testing data set

- The results on the testing set can be used to compare different learners powered with different models and learning algorithms
Design cycle

Data → Feature selection → Model selection → Learning → Testing/Evaluation

Require some prior knowledge

Design cycle

Data → Feature selection → Model selection → Learning → Evaluation

Require prior knowledge
Data

Data may need a lot of:
• Cleaning
• Preprocessing (conversions)

Cleaning:
– Get rid of errors, noise,
– Removal of redundancies

Preprocessing:
– Renaming
– Rescaling (normalization)
– Discretization
– Abstraction
– Aggregation
– New attributes

Data preprocessing

• **Renaming** (relabeling) categorical values to numbers
 – dangerous in conjunction with some learning methods
 – numbers will impose an order that is not warranted

<table>
<thead>
<tr>
<th>High</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• **Rescaling (normalization)**: continuous values transformed to some range, typically [-1, 1] or [0,1].

• **Discretizations (binning)**: continuous values to a finite set of discrete values
Data preprocessing

- **Abstraction:** merge together categorical values

- **Aggregation:** summary or aggregation operations, such as minimum value, maximum value, average etc.

- **New attributes:**
 - example: obesity-factor = weight/height

Data biases

- **Watch out for data biases:**
 - Try to understand the data source
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased (pre-selected)

- **Results (conclusions) derived for biased data do not hold in general !!!**
Data biases

Example 1: Risks in pregnancy study
- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- a woman that is single → the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)
- Data on stock performances of companies traded on stock market over past 25 year
- Investment goal: pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?
Feature selection

- **The size (dimensionality) of a sample** can be enormous
 \[x_i = (x_i^1, x_i^2, ..., x_i^d) \quad d \quad \text{very large} \]

- **Example: document classification**
 - thousands of documents
 - 10,000 different words
 - **Features/Inputs**: counts of occurrences of different words
 - Overfit threat - too many parameters to learn, not enough samples to justify the estimates the parameters of the model

- **Feature selection: reduces the feature sets**
 - Methods for removing input features
Model selection

- **What is the right model to learn?**
 - A prior knowledge helps a lot, but still a lot of guessing
 - Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
 - Independences and correlations
- **Overfitting problem**
 - Take into account the bias and variance of error estimates
 - Simpler (more biased) model – parameters can be estimated more reliably (smaller variance of estimates)
 - Complex model with many parameters – parameter estimates are less reliable (large variance of the estimate)
Solutions for overfitting

How to make the learner avoid the overfit?

- **Assure sufficient number of samples** in the training set
 - May not be possible (small number of examples)
- **Hold some data out of the training set = validation set**
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random re-sampling validation techniques)
- **Regularization (Occam’s Razor)**
 - Explicit preference towards simple models
 - Penalize for the model complexity (number of parameters) in the objective function

Design cycle

- Data
- Feature selection
- Model selection
- **Learning**
- Evaluation

Require prior knowledge

CS 2750 Machine Learning
Learning

- **Learning = optimization problem.** Various criteria:
 - **Mean square error**
 \[
 w^* = \arg \min_w Error(w) \quad Error(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2
 \]
 - **Maximum likelihood (ML) criterion**
 \[
 \Theta^* = \arg \max_\Theta P(D | \Theta) \quad Error(\Theta) = -\log P(D | \Theta)
 \]
 - **Maximum posterior probability (MAP)**
 \[
 \Theta^* = \arg \max_\Theta P(\Theta | D) \quad P(\Theta | D) = \frac{P(D | \Theta)P(\Theta)}{P(D)}
 \]

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- **Parameter optimizations (continuous space)**
 - Linear programming, Convex programming
 - Gradient methods: grad. descent, Conjugate gradient
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard
 - Some can be carried on-line on a sample by sample basis
- **Combinatorial optimizations (over discrete spaces):**
 - Hill-climbing
 - Simulated-annealing
 - Genetic algorithms
Design cycle

Data

Feature selection

Model selection

Learning

Require prior knowledge

Evaluation

Evaluation of learning models

• Simple holdout method
 – Divide the data to the training and test data

 Dataset

 Training set

 Testing set

 Learn (fit)

 Predictive model

 Evaluate

 – Typically 2/3 training and 1/3 testing
Evaluation

Other more complex methods
• Use multiple train/test sets
• Based on various random re-sampling schemes:
 – Random sub-sampling
 – Cross-validation
 – Bootstrap

Evaluation

• Random sub-sampling
 – Repeat a simple holdout method k times
Evaluation

Cross-validation (k-fold)
• Divide data into k disjoint groups, test on k-th group/train on the rest
• Typically 10-fold cross-validation
• Leave one out cross-validation (k = size of the data D)

Evaluation

Bootstrap
• The training set of size N = size of the data D
• Sampling with the replacement