Non-parametric density estimation and classification methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Nonparametric Density Estimation Methods

• **Parametric distribution models** are:
 – restricted to specific forms, which may not always be suitable;
 – Example: modelling a multimodal distribution with a single, unimodal model.

• **Nonparametric approaches:**
 – make few assumptions about the overall shape of the distribution being modelled.
Nonparametric Methods

Histogram methods:
partition the data space into
distinct bins with widths Δ_i and
count the number of observations, n_i, in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.
Nonparametric Methods

- Assume observations drawn from a density \(p(x) \) and consider a small region \(R \) containing \(x \) such that

\[
P = \int_R p(x) \, dx
\]

- The probability that \(K \) out of \(N \) observations lie inside \(R \) is \(\text{Bin}(K,N,P) \) and if \(N \) is large

\[
K \approx NP
\]

If the volume of \(R \): denoted \(V \), is sufficiently small, \(p(x) \) is approximately constant over \(R \) and

\[
P \approx p(x)V
\]

Thus

\[
p(x) = \frac{P}{V}
\]

\[
p(x) = \frac{K}{NV}
\]
Nonparametric Methods: kernel methods

Kernel Density Estimation:
Fix \(V \), estimate \(K \) from the data. Let \(R \) be a hypercube centred on \(x \) and define the kernel function (Parzen window)

\[
k\left(\frac{x - x_n}{h} \right) = \begin{cases} 1 & |(x_i - x_{ni})|/h \leq 1/2 \quad i = 1, \ldots D \\ 0 & \text{otherwise} \end{cases}
\]

- It follows that

\[
K = \sum_{n=1}^{N} k\left(\frac{x - x_n}{h} \right)
\]

- and hence

\[
p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^D} k\left(\frac{x - x_n}{h} \right)
\]
Nonparametric Methods: smooth kernels

To avoid discontinuities in $p(x)$ because of sharp boundaries use a **smooth kernel**, e.g. a Gaussian

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp \left\{ -\frac{\|x - x_n\|^2}{2h^2} \right\}$$

- Any kernel such that
 $$k(u) \geq 0,$$
 $$\int k(u) \, du = 1$$

- will work.

h acts as a smoother.
Nonparametric Methods: kNN estimation

Nearest Neighbour Density Estimation:

fix K, estimate V from the data. Consider a hyper-sphere centred on x and let it grow to a volume, V^*, that includes K of the given N data points. Then

$$p(x) \sim \frac{K}{NV^*}.$$
Nonparametric vs Parametric Methods

Nonparametric models:
• More flexibility – no density model is needed
• But require storing the entire dataset
• and the computation is performed with all data examples.

Parametric models:
• Once fitted, only parameters need to be stored
• They are much more efficient in terms of computation
• But the model needs to be picked in advance
Non-parametric Classification methods

- Given a data set with N_k data points from class C_k and $\sum_k N_k = N$, we have

$$p(x) = \frac{K}{NV}$$

- and correspondingly

$$p(x|C_k) = \frac{K_k}{N_k V}.$$

- Since $p(C_k) = N_k / N$, Bayes’ theorem gives

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)} = \frac{K_k}{K}.$$
K-Nearest-Neighbours for Classification

$K = 3$
Nonparametric kernel-based classification

- **Kernel function:** $k(x, x')$
 - Models similarity between x, x'
 - **Example:** Gaussian kernel we used in the kernel density estimation

\[
k(x, x') = \frac{1}{(2\pi h^2)^{D/2}} \exp \left(-\frac{(x - x')^2}{2h^2} \right)
\]

\[p(x) = \frac{1}{N} \sum_{i=1}^{N} k(x, x_i)\]

- **Kernel for classification**

\[
p(y = C_k \mid x) = \frac{\sum_{x': y'=C_k} k(x, x')}{\sum_{x'} k(x, x')}
\]