Support vector machines

Outline:

Outline:
- Fisher Linear Discriminant
- Algorithms for linear decision boundary
- **Support vector machines**
 - Maximum margin hyperplane.
 - Support vectors.
 - Support vector machines.
- Extensions to the non-separable case.
- Kernel functions.
Linear decision boundaries

• What models define linear decision boundaries?

Logistic regression model

• Discriminant functions:
 \(g_1(x) = g(w^T x) \sim g_0(x) = 1 - g(w^T x) \)
 • where \(g(z) = 1/(1 + e^{-z}) \) - is a logistic function

\[
f(x, w) = g_1(w^T x) = g(w^T x)
\]
Linear discriminant analysis (LDA)

- When covariances are the same
 \[x \sim N(\mu_0, \Sigma), \ y = 0 \]
 \[x \sim N(\mu_1, \Sigma), \ y = 1 \]

Linear decision boundaries

- Any other models/algorithms?
Fisher linear discriminant

- Project data into one dimension
 \[y = w^T x \]
 \[\text{Decision:} \quad y = w^T x + w_0 \geq 0 \]

- How to find the projection line?
Fisher linear discriminant

Assume:
\[m_1 = \frac{1}{N_1} \sum_{i \in C_1} x_i \quad m_2 = \frac{1}{N_2} \sum_{i \in C_2} x_i \]

Maximize the difference in projected means:
\[m_2 - m_1 = w^T (m_2 - m_1) \]

Problem 1: \(m_2 - m_1 = w^T (m_2 - m_1) \) can be maximized by increasing \(w \)

Problem 2: variance in class distributions after projection is changed

Fisher’s solution:
\[J(w) = \frac{m_2 - m_1}{s_1^2 + s_2^2} \]

Within class variance
\[s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2 \]
Fisher linear discriminant

Error:

\[J(w) = \frac{m_2 - m_1}{s_1^2 + s_2^2} \]

Within class variance after the projection

\[s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2 \]

Optimal solution:

\[w \approx S_w^{-1}(m_2 - m_1) \]

\[S_w = \sum_{i \in C_1} (x_i - m_1)(x_i - m_1)^T + \sum_{i \in C_2} (x_i - m_2)(x_i - m_2)^T \]

Linearly separable classes

There is a **hyperplane** that separates training instances with no error

Hyperplane:

\[w^T x + w_0 = 0 \]

<table>
<thead>
<tr>
<th>Class</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+1)</td>
<td>[w^T x + w_0 > 0]</td>
</tr>
<tr>
<td>(-1)</td>
<td>[w^T x + w_0 < 0]</td>
</tr>
</tbody>
</table>
Algorithms for linearly separable set

- **Separating hyperplane** \(w^T x + w_0 = 0 \)

 ![Graph of Separating Hyperplane](image)

 - We can use gradient methods or Newton Rhapsoby for sigmoidal switching functions and learn the weights.
 - Recall that we learn the linear decision boundary.
Algorithms for linearly separable sets

Perceptron algorithm:
• Simple iterative procedure for modifying the weights of the linear model
• Works for inputs x where each x_i is in $[0,1]$

Initialize weights w
Loop through examples (x, y) in the dataset D
1. Compute $\hat{y} = w^T x$
2. If $y \neq \hat{y} = -1$ then $w^T \leftarrow w^T + x$
3. If $y \neq \hat{y} = +1$ then $w^T \leftarrow w^T - x$

Until all examples are classified correctly

Properties:
• guaranteed convergence if the classes are linearly separable

Linear program solution:
• Finds weights that satisfy the following constraints:

\[
\begin{align*}
 w^T x_i + \omega &\geq 0 & \text{For all } i, \text{ such that } y_i = +1 \\
 w^T x_i - \omega &\leq 0 & \text{For all } i, \text{ such that } y_i = -1
\end{align*}
\]
Together: \[
y_i(w^T x_i + \omega) \geq 0
\]

Property: if there is a hyperplane separating the examples, the linear program finds the solution
Optimal separating hyperplane

• There are multiple hyperplanes that separate the data points
 – Which one to choose?
• **Maximum margin** choice: maximum distance of \(d_+ + d_- \)
 – where \(d_+ \) is the shortest distance of a positive example from the hyperplane (similarly \(d_- \) for negative examples)

Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
• These are called **support vectors**
Finding maximum margin hyperplanes

• **Assume** that examples in the training set are \((x_i, y_i)\) such that \(y_i \in \{+1, -1\}\)

• **Assume** that all data satisfy:
 \[
 w^T x_i + w_0 \geq 1 \quad \text{for} \quad y_i = +1 \\
 w^T x_i + w_0 \leq -1 \quad \text{for} \quad y_i = -1
 \]

• The inequalities can be combined as:
 \[y_i(w^T x_i + w_0) - 1 \geq 0 \quad \text{for all} \quad i\]

• Equalities define two hyperplanes:
 \[
 w^T x_i + w_0 = 1 \quad \quad w^T x_i + w_0 = -1
 \]

Finding the maximum margin hyperplane

• **Geometrical margin:** \(\rho_{w, w_0}(x, y) = y(w^T x + w_0)/\|w\|_2\)
 – measures the distance of a point \(x\) from the hyperplane
 \(w\) - normal to the hyperplane \(\|w\|_2\) - Euclidean norm

 For points satisfying:
 \[y_i(w^T x_i + w_0) - 1 = 0\]
 The distance is \(\frac{1}{\|w\|_2}\)

 Width of the margin:
 \[d_+ + d_- = \frac{2}{\|w\|_2}\]
Maximum margin hyperplane

- We want to maximize \(d_+ + d_- = \frac{2}{\|w\|_{L^2}} \)

- We do it by **minimizing**
 \[
 \|w\|_{L^2}^2 / 2 = w^T w / 2
 \]
 \(w, w_0 \) - variables

 - But we also need to enforce the constraints on points:
 \[
 \left[y_i (w^T x + w_0) - 1 \right] \geq 0
 \]

Maximum margin hyperplane

- **Solution**: Incorporate constraints into the optimization
- **Optimization problem** (Lagrangian)
 \[
 J(w, w_0, \alpha) = \|w\|^2 / 2 - \sum_{i=1}^{n} \alpha_i \left[y_i (w^T x + w_0) - 1 \right]
 \]
 \(\alpha_i \geq 0 \) - Lagrange multipliers

- **Minimize** with respect to \(w, w_0 \) (primal variables)
- **Maximize** with respect to \(\alpha \) (dual variables)

 Lagrange multipliers enforce the satisfaction of constraints

 If \(\left[y_i (w^T x + w_0) - 1 \right] > 0 \) \(\implies \alpha_i \rightarrow 0 \)

 Else \(\alpha_i > 0 \) Active constraint
Max margin hyperplane solution

- Set derivatives to 0 (Kuhn-Tucker conditions)
 \[\nabla_w J(w, w_0, \alpha) = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \]
 \[\frac{\partial J(w, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^{n} \alpha_i y_i = 0 \]

- Now we need to solve for Lagrange parameters (Wolfe dual)
 \[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]
 maximize

Subject to constraints
 \[\alpha_i \geq 0 \quad \text{for all } i, \quad \text{and} \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \]

- Quadratic optimization problem: solution \(\hat{\alpha}_i \) for all \(i \)

Maximum hyperplane solution

- The resulting parameter vector \(\hat{w} \) can be expressed as:
 \[\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i \]
 \(\hat{\alpha}_i \) is the solution of the dual problem

- The parameter \(w_0 \) is obtained through Karush-Kuhn-Tucker (KKT) conditions
 \[\hat{\alpha}_i [y_i (\hat{w}^T x_i + w_0) - 1] = 0 \]

Solution properties
- \(\hat{\alpha}_i = 0 \) for all points that are not on the margin
- \(\hat{w} \) is a linear combination of support vectors only

- The decision boundary:
 \[\hat{w}^T x + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 = 0 \]
Support vector machines

• The decision boundary:

\[\hat{w}^T x + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \]

• The decision:

\[\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \right] \]

• (!!):
 • Decision on a new \(x \) requires to compute the inner product between the examples \((x_i^T x) \)
 • Similarly, the optimization depends on \((x_i^T x_j) \)

\[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]
Extension to a linearly non-separable case

- **Idea**: Allow some flexibility on crossing the separating hyperplane

![Diagram showing linearly separable and non-separable data points]

- Relax constraints with variables $\xi_i \geq 0$
 - $w^T x_i + w_0 \geq 1 - \xi_i$ for $y_i = +1$
 - $w^T x_i + w_0 \leq -1 + \xi_i$ for $y_i = -1$

- Error occurs if $\xi_i \geq 1$, $\sum_{i=1}^{n} \xi_i$ is the upper bound on the number of errors

- Introduce a penalty for the errors
 - minimize $\|w\|^2 / 2 + C \sum_{i=1}^{n} \xi_i$

Subject to constraints

- C – set by a user, larger C leads to a larger penalty for an error
Extension to linearly non-separable case

- Lagrange multiplier form (primal problem)

\[J(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i [y_i(w^T x + w_0) - 1 + \xi_i] - \sum_{i=1}^{n} \mu_i \xi_i \]

- Dual form after \(w, w_0 \) are expressed (\(\xi_i \)'s cancel out)

\[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]

Subject to: \(0 \leq \alpha_i \leq C \) for all \(i \), and \(\sum_{j=1}^{n} \alpha_i y_i = 0 \)

Solution: \(\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i \)

The difference from the separable case: \(0 \leq \alpha_i \leq C \)

The parameter \(w_0 \) is obtained through KKT conditions

Support vector machines

- The decision boundary:

\[\hat{w}^T x + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \]

- The decision:

\[\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \right] \]

- (!!):

- Decision on a new \(x \) requires to compute the inner product between the examples \((x, x_i)\)
- Similarly, the optimization depends on \((x_i^T x_j)\)

\[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]
Nonlinear case

- The linear case requires to compute $(x_i^T x)$
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors
 \[x \rightarrow \phi(x) \]
- It is possible to use SVM formalism on feature vectors
 \[\phi(x)^T \phi(x') \]
- **Kernel function**
 \[K(x, x') = \phi(x)^T \phi(x') \]
- **Crucial idea:** If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

Kernel function example

- Assume \[x = [x_1, x_2]^T \] and a feature mapping that maps the input into a quadratic feature set
 \[x \rightarrow \phi(x) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T \]
- Kernel function for the feature space:
 \[K(x', x) = \phi(x')^T \phi(x) \]
 \[= x_1^2x'_1^2 + x_2^2x'_2^2 + 2x_1x_2x'_1x'_2 + 2x_1x'_1 + 2x_2x'_2 + 1 \]
 \[= (x_1x'_1 + x_2x'_2 + 1)^2 \]
 \[= (1 + (x^T x'))^2 \]
- The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space
Kernel function example

Linear separator in the feature space

Non-linear separator in the input space

Kernel functions

- **Linear kernel**
 \[K(x, x') = x^T x' \]

- **Polynomial kernel**
 \[K(x, x') = \left(1 + x^T x'\right)^k \]

- **Radial basis kernel**
 \[K(x, x') = \exp\left[-\frac{1}{2}\|x - x'\|^2\right] \]
Kernels

- Kernels can be defined for more complex objects:
 - Strings
 - Graphs
 - Images
- Kernel – similarity between pairs of objects