Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:
• Density estimation:
 – Maximum likelihood (ML)
 – Bayesian parameter estimates
 – MAP
• Bernoulli distribution
• Binomial distribution
• Multinomial distribution
• Normal distribution
Density estimation

Density estimation: is an unsupervised learning
- Learn relations among attributes in the data

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)
- \(D_i = x_i \) a vector of attribute values

Attributes:
- modeled by random variables \(X = \{X_1, X_2, \ldots, X_d\} \) with
 - Continuous or discrete valued variables

Density estimation attempts to learn the underlying probability distribution: \(p(X) = p(X_1, X_2, \ldots, X_d) \)

Density estimation

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)
- \(D_i = x_i \) a vector of attribute values

Objective: estimate the underlying probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters \(\Theta \)
 \[p(X | \Theta) \]
- **Example**: mean and covariances of a multivariate normal
- **Estimation**: find parameters \(\Theta \) describing data \(D \)

Non-parametric
- The model of the distribution utilizes all examples in \(D \)
- As if all examples were parameters of the distribution
- **Examples**: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(X = \{X_1, X_2, \ldots, X_d\} \)
- A model of the distribution over variables in \(X \) with parameters \(\Theta : \hat{p}(X | \Theta) \)

Data \(D = \{D_1, D_2, \ldots, D_n\} \)

Objective: find parameters \(\Theta \) such that \(p(X | \Theta) \) fits data \(D \) the best
Parameter estimation

- **Maximum likelihood (ML)**
 - maximize \(p(D \mid \Theta, \xi) \)
 - yields: one set of parameters \(\Theta_{ML} \)
 - the target distribution is approximated as:
 \[
 \hat{p}(X) = p(X \mid \Theta_{ML})
 \]

- **Bayesian parameter estimation**
 - uses the posterior distribution over possible parameters
 \[
 p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
 \]
 - Yields: all possible settings of \(\Theta \) (and their “weights”)
 - The target distribution is approximated as:
 \[
 \hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta
 \]

Other possible criteria:

- **Maximum a posteriori probability (MAP)**
 - maximize \(p(\Theta \mid D, \xi) \) (mode of the posterior)
 - Yields: one set of parameters \(\Theta_{MAP} \)
 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \Theta_{MAP})
 \]

- **Expected value of the parameter**
 - \(\hat{\Theta} = E(\Theta) \) (mean of the posterior)
 - Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)
 - Yields: one set of parameters
 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \hat{\Theta})
 \]
Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Objective:
We would like to estimate the probability of a **head** $\hat{\theta}$
from data

Parameter estimation. Example.

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**

 H H T T H H T H T T H T H H H T H H H T

 - Heads: 15
 - Tails: 10

What would be your estimate of the probability of a head $\hat{\theta}$?

$\hat{\theta} = \ ?$
Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:
 H H T T H T H T T T T H T H H T H H H T
 - Heads: 15
 - Tails: 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\tilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ

probability of a tail $(1 - \theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i | \theta) = \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1 - \theta)$ for $x_i = 0$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of independent coin flips
$D = H H T H T H$ (encoded as $D = 110101$)

What is the probability of observing the data sequence D:

$$P(D | \theta) = ?$$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = H \ H \ T \ H \ T \ H$
encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = H \ H \ T \ H \ T \ H$
encoded as $D= 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{1-x_i}$$

Can be rewritten using the Bernoulli distribution:
The goodness of fit to the data

Learning: we do not know the value of the parameter θ

Our learning goal:
- Find the parameter θ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

$$P(D | \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1-x_i}$$

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D | \theta)$$

Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a head $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i | \theta) = \theta^{x_i} (1 - \theta)^{1-x_i} \quad \text{Bernoulli distribution}$$
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \]
\[\sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i) \]

\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log(1-\theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:

 H H T T H H T H T T H T T H H H T H H H T T
 – Heads: 15
 – Tails: 10

What is the ML estimate of the probability of a head and a tail?

\[
\begin{align*}
\text{Head:} & \quad \theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6 \\
\text{Tail:} & \quad (1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4
\end{align*}
\]
Maximum a posteriori estimate

Maximum a posteriori estimate
– Selects the mode of the posterior distribution
\[\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta \mid D, \xi) \]

Likelihood of data \(p(\theta \mid D, \xi) \) prior \(p(D \mid \xi) \)

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)} \quad \text{(via Bayes rule)}
\]

\[
P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \theta^{N_1} (1 - \theta)^{N_2}
\]

\[p(\theta \mid \xi) \quad \text{- is the prior probability on } \theta \]

How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution
\[
p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \theta^{\alpha_1-1} (1 - \theta)^{\alpha_2-1}
\]

\[\Gamma(x) \quad \text{- a Gamma function} \quad \Gamma(x) = (x-1)\Gamma(x-1) \]
\[\text{For integer values of } x \quad \Gamma(n) = (n-1)! \]

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices

\[P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2} \]

Posterior distribution is again a Beta distribution
\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
Beta distribution

\[
p(\theta \mid \xi) = \text{Beta}(\theta \mid a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1}
\]

Posterior distribution

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)^\mu}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
Maximum a posterior probability

Maximum a posteriori estimate
- Selects the mode of the **posterior distribution**

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]

\[
= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1 + \alpha_1 - 1}(1 - \theta)^{N_2 + \alpha_2 - 1}
\]

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as **prior counts**)

MAP Solution:

\[
\theta_{\text{MAP}} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}
\]

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 H H T T H H T H T H T T T H H H T H H T H T

 - Heads: 15
 - Tails: 10

- Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)

What is the MAP estimate?
MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is \(\theta \)
• Data:
 H H T T H H T H T H T T H T H H H T H H H H H T
 – Heads: 15
 – Tails: 10
• Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)
What is the MAP estimate?

\[
\theta_{\text{MAP}} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}
\]

MAP estimate example

• Note that the prior and data fit (data likelihood) are combined
• The MAP can be biased with large prior counts
• It is hard to overturn it with a smaller sample size
• Data:
 H H T T H H T H T T H T H T T H H H T H H H H T
 – Heads: 15
 – Tails: 10
• Assume
 \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)
 \(\theta_{\text{MAP}} = \frac{19}{33} \)
 \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,20) \)
 \(\theta_{\text{MAP}} = \frac{19}{48} \)
Bayesian framework

Both ML or MAP estimates pick one value of the parameter

- **Assume:** there are two different parameter settings that are close in terms of their probability values. Using only one of them may introduce a strong bias, if we use them, for example, for predictions.

Bayesian parameter estimate
- Remedies the limitation of one choice
- Keeps all possible parameter values
- Where \(p(\theta \mid D, \xi) \approx Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \)

- **The posterior can be used to define** \(p(A \mid D) \):
 \[
p(A \mid D) = \int_0^1 p(A \mid \Theta \mid D, \xi) d\Theta
 \]

Bayesian framework

- **Predictive probability of an outcome** \(x=1 \) in the next trial \(P(x=1 \mid D, \xi) \)

\[
P(x=1 \mid D, \xi) = \int_0^1 P(x=1 \mid \theta, \xi) p(\theta \mid D, \xi) d\theta
= \int_0^1 \theta p(\theta \mid D, \xi) d\theta = E(\theta)
\]

- **Equivalent to the expected value of the parameter**
 - expectation is taken with respect to the posterior distribution
 \[p(\theta \mid D, \xi) = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]
Expected value of the parameter

How to obtain the expected value?

\[E(\theta) = \int_0^1 \theta \beta(\theta | \eta_1, \eta_2) d\theta = \frac{1}{\Gamma(\eta_1)\Gamma(\eta_2)} \int_0^1 \theta^{\eta_1 + \eta_2 - 1} (1 - \theta)^{\eta_2 - 1} d\theta \]

\[= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1)\Gamma(\eta_2)} \left[\frac{\Gamma(\eta_1 + 1)\Gamma(\eta_2)}{\Gamma(\eta_1 + \eta_2 + 1)} \right] \beta(\eta_1 + 1, \eta_2) d\theta \]

\[= \frac{\eta_1}{\eta_1 + \eta_2} \]

Note: \(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha) \) for integer values of \(\alpha \)

Expected value of the parameter

- **Substituting the results for the posterior:**
 \[p(\theta | D, \xi) = \beta(\theta | \alpha_1 + N_1, \alpha_2 + N_2) \]

- **We get**
 \[E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + N_1 + \alpha_2 + N_2} \]

- **Note that the mean of the posterior is yet another “reasonable” parameter choice:**
 \[\hat{\theta} = E(\theta) \]
Binomial distribution

Example problem: a biased coin
Outcomes: two possible values -- head or tail
Data: a set of order-independent outcomes for N trials
\[N_1 \] - number of heads seen \[N_2 \] - number of tails seen

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Probability of an outcome
\[
P(N_1 \mid N, \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N - N_1} \quad \text{Binomial distribution}
\]

Objective:
We would like to estimate the probability of a head \(\hat{\theta} \)
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_2} = \frac{N!}{N_1!N_2!} \theta^{N_1} (1 - \theta)^{N_2} \]

Log-likelihood
\[l(D, \theta) = \log \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_2} = \log \frac{N!}{N_1!N_2!} + N_1 \log \theta + N_2 \log (1 - \theta) \]

Constant from the point of optimization !!!

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]

The same as for Bernoulli and \(D \) with iid sequence of examples

Posterior density

Posterior density
\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)} \quad \text{(via Bayes rule)} \]

Prior choice
\[p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1} (1 - \theta)^{\alpha_2-1} \]

Likelihood
\[P(D \mid \theta) = \frac{\Gamma(N_1 + N_2)}{\Gamma(N_1)\Gamma(N_2)} \theta^{N_1} (1 - \theta)^{N_2} \]

Posterior
\[p(\theta \mid D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

MAP estimate
\[\theta_{MAP} = \arg \max_{\theta} p(\theta \mid D, \xi) \]
\[\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} \]
Expected value of the parameter

The result is the same as for Bernoulli distribution

\[E(\theta) = \int_0^1 \theta \text{Beta}(\theta | \eta_1, \eta_2) d\theta = \frac{\eta_1}{\eta_1 + \eta_2} \]

Expected value of the parameter

\[E(\theta) = \frac{\alpha_i + N_1}{\alpha_i + N_1 + \alpha_2 + N_2} \]

Predictive probability of event \(x=1 \)

\[P(x = 1 | \theta, \xi) = E(\theta) = \frac{\alpha_i + N_1}{\alpha_i + N_1 + \alpha_2 + N_2} \]