Ensambles methods: Boosting

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Schedule

Term projects & project presentations:
• April 25: 1:00-4:00pm?
• April 25 & April 27: 1:00 - 2:30pm
Ensemble methods

- **Mixture of experts**
 - Multiple ‘base’ models (classifiers, regressors), each covers a different part (region) of the input space

- **Committee machines:**
 - Multiple ‘base’ models (classifiers, regressors), each covers the complete input space
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - **Goal:** Improve the accuracy of the ‘base’ model
 - **Methods:**
 - Bagging
 - Boosting
 - Stacking (not covered)

Bagging algorithm

- **Training**
 - In each iteration t, $t=1,\ldots,T$
 - Randomly sample with replacement N samples from the training set
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

- **Test**
 - For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - **Classification:** a majority vote
Simple Majority Voting

Test examples

- Class “yes”
- Class “no”

Analysis of Bagging

- **Expected error** = **Bias**+**Variance**
 - *Expected error* is the expected discrepancy between the estimated and true function
 \[
 E \left[\left(\hat{f}(X) - E[f(X)] \right)^2 \right]
 \]
 - *Bias* is squared discrepancy between averaged estimated and true function
 \[
 \left(E[\hat{f}(X)] - E[f(X)] \right)^2
 \]
 - *Variance* is expected divergence of the estimated function vs. its average value
 \[
 E\left[\left(\hat{f}(X) - E[\hat{f}(X)]\right)^2\right]
 \]
When Bagging works?
Under-fitting and over-fitting

- **Under-fitting:**
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)

- **Over-fitting:**
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)

Main property of Bagging (proof omitted)
- Bagging decreases variance of the base model without changing the bias!!!
- Why? averaging!

Bagging typically helps
- When applied with an over-fitted base model
 - High dependency on actual training data

It does not help much
- High bias. When the base model is robust to the changes in the training data (due to sampling)
Boosting

- **Mixture of experts**
 - One expert per region
 - Expert switching
- **Bagging**
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are learned independently
- **Boosting**
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent

Boosting. Theoretical foundations.

- **PAC: Probably Approximately Correct framework**
 - (ε, δ) solution
- **PAC learning:**
 - Learning with the pre-specified error ε and confidence δ parameters
 - The probability that the misclassification error is larger than ε is smaller than δ

\[P (ME (c) > \varepsilon) \leq \delta \]

- **Accuracy (1-\(\varepsilon\)):** Percent of correctly classified samples in test
- **Confidence (1-\(\delta\)):** The probability that in one experiment some accuracy will be achieved

\[P (Acc (c) > 1 - \varepsilon) > (1 - \delta) \]
PAC Learnability

Strong (PAC) learnability:
- There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **accuracy and confidence**

Strong (PAC) learner:
- A learning algorithm P that given an arbitrary
 - classification error $\varepsilon (< 1/2)$, and
 - confidence $\delta (<1/2)$
- Outputs a classifier that satisfies this parameters
 - In other words gives:
 - classification accuracy $> (1-\varepsilon)$
 - confidence probability $> (1 - \delta)$
 - And runs in time polynomial in $1/\delta$, $1/\varepsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\varepsilon$

Weak Learner

Weak learner:
- A learning algorithm (learner) W
 - Providing a classification accuracy $> 1-\varepsilon_o$
 - and probability $>1 - \delta_o$
- For some **fixed and uncontrollable**
 - error $\varepsilon_o (<1/2)$
 - confidence $\delta_o (<1/2)$

And this on an arbitrary distribution of data entries
Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (50 %) with confidence higher than 50 % on any data distribution

- Question:
 - Is problem also PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary $(\varepsilon-\delta)$ accuracy?

- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?

Weak=Strong learnability!!!

- Proof due to R. Schapire
 An arbitrary $(\varepsilon-\delta)$ improvement is possible

Idea: combine multiple weak learners together
- Weak learner W with confidence δ_o and maximal error ε_o
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy
 by training different weak learners on slightly different datasets
Boosting accuracy

Training

• Sample randomly from the distribution of examples
• Train hypothesis H_1 on the sample
• Evaluate accuracy of H_1 on the distribution
• Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2
• Train H_3 on samples from the distribution where H_1 and H_2 classify differently

Test

• For each example, decide according to the majority vote of H_1, H_2, and H_3
Theorem

- If each hypothesis has an error ϵ_0, the final classifier has error $< g(\epsilon_0) = 3 \epsilon_0^2 - 2 \epsilon_0^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!

![Graph](image)

Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence

- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all data problems
 - We cannot properly sample from data-distribution
 - The method requires a large training set

- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants
AdaBoost

- **AdaBoost**: boosting by sampling

- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)

- **Regression** (Drucker; 1997)
 - AdaBoostR

AdaBoost

- **Given:**
 - A training set of N examples (attributes + class label pairs)
 - A “base” learning model (e.g. a decision tree, a neural network)

- **Training stage:**
 - Train a sequence of T “base” models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the $(t-1)$th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

- **Application (classification) stage:**
 - Classify according to the weighted majority of classifiers
AdaBoost training

Training data

- **Distribution**
 - D_1
- **Learn**
 - Model 1
- **Test**
 - Errors 1

- **Distribution**
 - D_2
- **Learn**
 - Model 2
- **Test**
 - Errors 2

- **Distribution**
 - D_T
- **Learn**
 - Model T
- **Test**
 - Errors T

AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t
 - $D_t(i)$ - a probability that example i from the original training dataset is selected
 - $D_1(i) = 1 / N$ for the first step ($t=1$)
- **Take** K samples from the training set according to D_t
- **Train** a classifier h_t on the samples
- **Calculate** the error ε_t of h_t: $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
- **Classifier weight**: $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$
- **New sampling distribution**

 $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 \beta_t & h_t(x_i) = y_i \\
 1 & \text{otherwise}
 \end{cases}$

 Norm. constant
AdaBoost. Sampling Probabilities

Example:
- Nonlinearly separable binary classification
- NN as week learners

AdaBoost: Sampling Probabilities
AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set
 $$w_t = \log \left(\frac{1}{\beta_t} \right) = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
 $$\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$$

- Classification:
 For every class $j=0,1$
 - Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 - Output class that correspond to the maximal sum of weights (weighted majority)
 $$h_{final}(x) = \arg \max_j \sum_{t: h_t(x) = j} w_t$$

Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

- Weighted majority “yes”
 $$0.7 - 0.5 = +0.2$$
- The final choose is “yes” + 1
What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples
- **Boosting can:**
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- **Train versus test errors performance:**
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers

Boosting. Error performances

![Error performances graph](image_url)
Bayesian model Averaging

• An alternative to combine multiple models: can be used for supervised and unsupervised frameworks

• For example:
 – Likelihood of the data can be expressed by averaging over the multiple models
 \[P(D) = \sum_{i=1}^{N} P(D \mid M = m_i) P(M = m_i) \]
 – Prediction:
 \[P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i) P(M = m_i) \]