Planning

Representation of actions, situations, events

The world is dynamic:
• What is true now may not be true tomorrow
• Changes in the world may be triggered by our activities

Problems:
• Logic (FOL) as we had it referred to a static world. How to represent the change in the FOL?
• How to represent actions we can use to change the world?

Planning problem:
• find a sequence of actions that achieves some goal in this complex world
Planning

Planning problem:
• find a sequence of actions that achieves some goal
• An instance of a search problem

Methods for modeling and solving a planning problem:
• Situation calculus (extends FOL)
• State space search (STRIPS - restricted FOL)
• Plan-based search (for STRIPS)
• GRAPHPLAN – for propositional languages

Situation calculus

Provides a framework for representing change, actions and reasoning about them

• Situation calculus
 – based on first-order logic,
 – a situation variable models new states of the world
 – action objects model activities
 – uses inference methods developed for FOL to do the reasoning
Situation calculus

- Logic for reasoning about changes in the state of the world
- **The world is described by:**
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions
- **The situation calculus allows us to:**
 - Describe the initial state and a goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB and the initial state lead to a goal state
 - extracts a plan as side-effect of the proof

Situation calculus

The language is based on the First-order logic plus:
- **Special variables:** s, a – objects of type situation and action
- **Action functions:** return actions.
 - E.g. $Move(A, TABLE, B)$ represents a move action
 - $Move(x,y,z)$ represents an action schema
- **Two special function symbols of type situation**
 - s_0 – initial situation
 - $DO(a,s)$ – denotes the situation obtained after performing an action a in situation s
- **Situation-dependent functions and relations** (also called fluents)
 - **Relation:** $On(x,y,s)$ – object x is on object y in situation s;
 - **Function:** $Above(x,s)$ – object that is above x in situation s.

Situation calculus. Blocks world example.

Initial state

- On(A, Table, s₀)
- On(B, Table, s₀)
- On(C, Table, s₀)
- Clear(A, s₀)
- Clear(B, s₀)
- Clear(C, s₀)
- Clear(Table, s₀)

Goal

Find a state (situation) s, such that

- On(A, B, s)
- On(B, C, s)
- On(C, Table, s)

Note: It is not necessary that the goal describes all relations

Clear(A, s)
Blocks world example.

Assume a simpler goal $On(A, B, s)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

Initial state

$On(A, Table, s_0)$

$On(B, Table, s_0)$

$On(C, Table, s_0)$

Clear(A, s_0)

Clear(B, s_0)

Clear(C, s_0)

Clear($Table, s_0$)

Goal $On(A, B, s)$

3 possible goal configurations

Knowledge base: Axioms.

Knowledge base needed to support the reasoning:

- Must represent changes in the world due to actions.

Two types of axioms:

- **Effect axioms**
 - changes in situations that result from actions

- **Frame axioms**
 - things preserved from the previous situation
Blocks world example. Effect axioms.

Effect axioms:
Moving x from y to z. \(MOVE \ ((x, y, z) \) \)

Effect of move changes on \(On \) relations
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))
\]
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))
\]

Effect of move changes on \(Clear \) relations
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))
\]
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table) \rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))
\]

Blocks world example. Frame axioms.

- **Frame axioms.**
 - Represent things that remain unchanged after an action.

On relations:
\[
On(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow On(u, v, DO(MOVE(x, y, z), s))
\]

Clear relations:
\[
Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s))
\]
Planning in situation calculus

Planning problem:
• find a sequence of actions that lead to a goal

Planning in situation calculus is converted to the theorem proving problem

Goal state:
\[\exists s \ (On(A,B,s) \land On(B,C,s) \land On(C,Table,s)) \]

• Possible inference approaches:
 – Inference rule approach
 – Conversion to SAT

• Plan (solution) is a byproduct of theorem proving.

• Example: blocks world

Planning in a blocks world.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Initial state

- On(A, Table, s₀)
- On(B, Table, s₀)
- On(C, Table, s₀)
- Clear(A, s₀)
- Clear(B, s₀)
- Clear(C, s₀)
- Clear(Table, s₀)

Goal

- On(A, B, s)
- On(B, C, s)
- On(C, Table, s)
Planning in the blocks world.

Initial state (s_0) s_1

$s_0 =$
- $On(A, Table, s_0)$ Clear (A, s_0) Clear ($Table, s_0$)
- $On(B, Table, s_0)$ Clear (B, s_0)
- $On(C, Table, s_0)$ Clear (C, s_0)

Action: MOVE ($B, Table, C$)

$s_1 = DO(MOVE (B, Table, C), s_0)$

- $On(A, Table, s_1)$ Clear (A, s_1) Clear ($Table, s_1$)
- $On(B, C, s_1)$ Clear (B, s_1)
- $On(C, Table, s_1)$ Clear (C, s_1)

Planning in the blocks world.

Initial state (s_0) s_1 s_2

$s_1 = DO(MOVE (B, Table, C), s_0)$

- $On(A, Table, s_1)$ Clear (A, s_1) Clear ($Table, s_1$)
- $On(B, C, s_1)$ Clear (B, s_1)
- $On(C, Table, s_1)$ Clear (C, s_1)

Action: MOVE ($A, Table, B$)

$s_2 = DO(MOVE (A, Table, B), s_1)$

$= DO(MOVE (A, Table, B), DO(MOVE (B, Table, C), s_0))$

- $On(A, B, s_2)$ $On(A, Table, s_2)$ Clear (B, s_2)
- $On(B, C, s_2)$ $On(B, Table, s_2)$ Clear (C, s_2)
- $On(C, Table, s_2)$ Clear (A, s_2) Clear ($Table, s_2$)
Planning in situation calculus.

Planning problem:
- Find a sequence of actions that lead to a goal
- Planning in situation calculus is converted to theorem proving.

- Problems with situation calculus:
 - Large search space
 - Large number of axioms to be defined for one action
 - Proof may not lead to the best (shortest) plan.

Planning problems

Properties of (real-world) planning problems:

- The description of the state of the world is very complex
- Many possible actions to apply in any step
- Actions are typically local
 - they affect only a small portion of a state description
- Goals are defined as conditions and refer only to a small portion of state
- Plans consists of a long sequence of actions

- The state space search and situation calculus frameworks may be too cumbersome and inefficient to represent and solve the planning problems
Situation calculus: problems

Frame problem refers to:
- The need to represent a large number of frame axioms

Solution: combine positive and negative effects in one rule

\[On(u, v, DO(MOVE(x, y, z), s)) \Leftrightarrow \neg((u = x) \land (v = y)) \land On(u, v, s) \lor \]
\[\lor (((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s)) \]

Inferential frame problem:
- We still need to derive properties that remain unchanged

Other problems:
- Qualification problem – enumeration of all possibilities under which an action holds
- Ramification problem – enumeration of all inferences that follow from some facts

Solutions

- Complex state description and local action effects:
 - avoid the enumeration and inference of every state component, focus on changes only

- Many possible actions:
 - Apply actions that make progress towards the goal
 - Understand what the effect of actions is and reason with the consequences

- Sequences of actions in the plan can be too long:
 - Many goals consists of independent or nearly independent sub-goals
 - Allow goal decomposition & divide and conquer strategies
STRIPS framework

- Defines a restricted version of the FOL representation language as compared to the situation calculus

Advantage: leads to more efficient planning algorithms.
- State-space search with structured representations of states, actions and goals
- Action representation avoids the frame problem

STRIPS planning problem:
- much like a standard search (planning) problem;

STRIPS planner

- **States:**
 - conjunction of literals, e.g. $On(A,B)$, $On(B,Table)$, $Clear(A)$
 - represent facts that are true at a specific point in time
- **Actions (operators):**
 - **Action:** $Move(x,y,z)$
 - **Preconditions:** conjunctions of literals with variables
 $On(x,y)$, $Clear(x)$, $Clear(z)$
 - **Effects.** Two lists:
 - **Add list:** $On(x,z)$, $Clear(y)$
 - **Delete list:** $On(x,y)$, $Clear(z)$
 - Everything else remains untouched (is preserved)
STRIPS planning

Operator: Move \((x,y,z)\)

- **Preconditions:** \(On(x,y), Clear(x), Clear(z)\)
- **Add list:** \(On(x,z), Clear(y)\)
- **Delete list:** \(On(x,y), Clear(z)\)

Initial state:
- Conjunction of literals that are true

Goals in STRIPS:
- A goal is a partially specified state
- Is defined by a conjunction of ground literals
 - No variables allowed in the description of the goal

Example:
\[On(A,B) \land On(B,C) \]
Search in STRIPS

Objective:
Find a sequence of operators (a plan) from the initial state to the state satisfying the goal

Two approaches to build a plan:
- **Forward state space search (goal progression)**
 - Start from what is known in the initial state and apply operators in the order they are applied
- **Backward state space search (goal regression)**
 - Start from the description of the goal and identify actions that help to reach the goal

Forward search (goal progression)

- Idea: Given a state \(s \)
 - Unify the preconditions of some operator \(a \) with \(s \)
 - Add and delete sentences from the add and delete list of an operator \(a \) from \(s \) to get a new state (can be repeated)

A	B	C
On(\(B, Table \))
Clear(\(C \))
On(\(A, Table \))
On(\(C, Table \))
Clear(\(A \))
Clear(\(B \))
Clear(\(Table \))

Move(\(B, Table, C \))

\[\rightarrow \]

A	B	C
On(\(B, C \))

delete
add

unchanged

On(\(A, Table \))
On(\(C, Table \))
Clear(\(A \))
Clear(\(B \))
Clear(\(Table \))
Forward search (goal progression)

- Use operators to generate new states to search
- Check new states whether they satisfy the goal

Search tree:

- Initial state: A B C
- Move (A, Table, B)
- Move (B, Table, C)
- Move (A, Table, C)
- Move (A, Table, B)

Goal (G)

- A
- B
- C

New goal (G’)

- On (A, Table)
- Clear (B)
- Clear (A)
- On (B, C)
- On (C, Table)

Backward search (goal regression)

Idea: Given a goal G

- Unify the add list of some operator a with a subset of G
- If the delete list of a does not remove elements of G, then the goal regresses to a new goal G’ that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a

- Move (A, Table, B)
- New goal (G’)

Goal (G)

- On (A, B)
- On (B, C)
- On (C, Table)

Mapped from G

- Precondition
- Add
Backward search (goal regression)

- Use operators to generate new goals
- Check whether the initial state satisfies the goal

Search tree:

![Search tree diagram]

- Initial state: A B C
- Move (B, Table, C) → Move (A, Table, B) → goal
 - Move (A, B, Table)