Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form

- Key aspects of knowledge representation languages:
 - **Syntax**: describes how sentences are formed in the language
 - **Semantics**: describes the meaning of sentences, what is it the sentence refers to in the real world
 - **Computational aspect**: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic
Logic

- **Logic:**
 - defines a formal language for logical reasoning

- It gives us a tool that helps us to understand how to construct a valid argument

- **Logic Defines:**
 - the meaning of statements
 - the rules of logical inference

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.

- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with values.

- **The valuation (meaning) function** \(V \)
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

\[
V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True, False}\}
\]
Propositional logic

- The simplest logic

- **Definition:**
 - A *proposition* is a statement that is either true or false.

- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - \(5 + 2 = 8\).
 - ?
Propositional logic

• The simplest logic

• **Definition:**
 – A proposition is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – 5 + 2 = 8.
 • (F)
 – It is raining today.
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • ?
 – x + 5 = 3
 • ?
 – a question is not a proposition
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – \(x + 5 = 3 \)
 • since \(x \) is not specified, neither true nor false
 – 2 is a prime number.
 • (T)
 – She is very talented.
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – \(x + 5 = 3 \)
 • since \(x \) is not specified, neither true nor false
 – 2 is a prime number.
 • (T)
 – She is very talented.
 • since she is not specified, neither true nor false
 – There are other life forms on other planets in the universe.
 • ?
Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:
- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols
 Examples:
 - P
 - Pitt is located in the Oakland section of Pittsburgh,
 - It rains outside, etc.
 - A set of connectives:
 →, ∧, ∨, ⇒, ⇔

Sentences in the propositional logic:
- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then
 \(\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B) \)
 or \((A \lor B) \land (A \lor \neg B) \)
 are sentences
Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of connectives**
 - Meaning (semantics) of composite sentences

Semantic: propositional symbols

A **propositional symbol**
- a statement about the world that is either true or false

Examples:
- Pitt is located in the Oakland section of Pittsburgh
- It rains outside
- Light in the room is on

- An **interpretation** maps symbols to one of the two values: **True (T)**, or **False (F)**, depending on whether the symbol is satisfied in the world

I: Light in the room is on -> **True**, It rains outside -> **False**

I': Light in the room is on -> **False**, It rains outside -> **False**
Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

\[I: \text{Light in the room is on } \rightarrow \text{True, It rains outside } \rightarrow \text{False} \]

\[V(\text{Light in the room is on, } I) = \text{True} \]
\[V(\text{It rains outside, } I) = \text{False} \]

\[I': \text{Light in the room is on } \rightarrow \text{False, It rains outside } \rightarrow \text{False} \]

\[V(\text{Light in the room is on, } I') = \text{False} \]

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True, False value

\[
\begin{align*}
V(\text{True, } I) &= \text{True} \\
V(\text{False, } I) &= \text{False}
\end{align*}
\]

For any interpretation \(I \)
Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>T</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>F</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>F</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Translation

Assume the following sentences:
- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:
- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s = we will take a canoe trip
- t = We will be home by sunset
Translation

Assume the following sentences:
- It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:
- \(p \) = It is sunny this afternoon
- \(q \) = it is colder than yesterday
- \(r \) = We will go swimming
- \(s \) = we will take a canoe trip
- \(t \) = We will be home by sunset
Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \wedge q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $s \rightarrow t$

Denote:

- $p =$ It is sunny this afternoon
- $q =$ it is colder than yesterday
- $r =$ We will go swimming
- $s =$ we will take a canoe trip
- $t =$ We will be home by sunset
Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

- **Contradiction** (always *False*)
 \[P \land \neg P \]

- **Tautology** (always *True*)
 \[P \lor \neg P \]

\[
\neg(P \lor Q) \iff (\neg P \land \neg Q) \quad \neg(P \land Q) \iff (\neg P \lor \neg Q) \quad \text{DeMorgan’s Laws}
\]

Model, validity and satisfiability

- A **model** (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

\[
\begin{array}{|c|c|c|c|c|}
\hline
P & Q & P \lor Q & (P \lor Q) \land \neg Q & ((P \lor Q) \land \neg Q) \Rightarrow P \\
\hline
\text{True} & \text{True} & \text{True} & \text{False} & \text{True} \\
\text{True} & \text{False} & \text{True} & \text{True} & \text{True} \\
\text{False} & \text{True} & \text{True} & \text{False} & \text{True} \\
\text{False} & \text{False} & \text{False} & \text{False} & \text{True} \\
\hline
\end{array}
\]
Model, validity and satisfiability

- A **model (in logic)**: An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

| | | \(P \lor Q \) | \((P \lor Q) \land \neg Q\) | \(((P \lor Q) \land \neg Q) \Rightarrow P\)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Satisfiable sentence

| | | \(P \lor Q \) | \((P \lor Q) \land \neg Q\) | \(((P \lor Q) \land \neg Q) \Rightarrow P\)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model:
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>Satisfiable sentence</th>
<th>Valid sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \lor Q$</td>
<td>$(P \lor Q) \land \neg Q$</td>
</tr>
<tr>
<td>True True</td>
<td>True</td>
</tr>
<tr>
<td>True False</td>
<td>True</td>
</tr>
<tr>
<td>False True</td>
<td>False</td>
</tr>
<tr>
<td>False False</td>
<td>False</td>
</tr>
</tbody>
</table>

Entailment

- Entailment reflects the relation of one fact in the world following from the others according to logic

- Entailment $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
Sound and complete inference.

Inference is a process by which conclusions are reached.
• We want to implement the inference process on a computer!!

Assume an inference procedure i that
• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment
• **Soundness:** An inference procedure is **sound**

 If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

• **Completeness:** An inference procedure is **complete**

 If $KB \models \alpha$ then it is true that $KB \vdash_i \alpha$

Logical inference problem

Logical inference problem:
• **Given:**
 – a knowledge base KB (a set of sentences) and
 – a sentence α (called a theorem),
• **Does a KB semantically entail α?** $KB \models \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.
Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha \ ? \]

Three approaches:

- **Truth-table approach**
- **Inference rules**
- **Conversion to the inverse SAT problem**
 - **Resolution-refutation**

Truth-table approach

Problem: \[KB \models \alpha \ ? \]

- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:

- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \Leftrightarrow Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

Problem: \(KB \models \alpha \) ?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
<th>P \equiv Q</th>
<th>(P \lor \neg Q) \land Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

\[\alpha = | KB | \land (P \lor \neg Q) \land Q \]

CS 2740 Knowledge Representation

M. Hauskrecht

Truth-table approach

Problem: \(KB \models \alpha \) ?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
<th>P \equiv Q</th>
<th>(P \lor \neg Q) \land Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

\[\alpha = | KB | \land (P \lor \neg Q) \land Q \]

CS 2740 Knowledge Representation

M. Hauskrecht
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$, $\alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

KB entails α

- The truth-table approach is sound and complete for the propositional logic!!
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

What is the computational complexity of the truth table approach?

- Exponential in the number of the proposition symbols

\[2^n \] Rows in the table has to be filled
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

\[2^n \]

Rows in the table has to be filled

But typically only for a small subset of rows the KB is true