Propositional logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Knowledge representation
Knowledge-based agent

- **Knowledge base (KB):**
 - A set of sentences that describe facts about the world in some formal (representational) language
 - **Domain specific**
- **Inference engine:**
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - **Domain independent**

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- **Knowledge base** represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

\[
\begin{align*}
\text{If} & \quad 1. \text{The stain of the organism is gram-positive, and} \\
& \quad 2. \text{The morphology of the organism is coccus, and} \\
& \quad 3. \text{The growth conformation of the organism is chains} \\
\text{Then} & \quad \text{the identity of the organism is streptococcus}
\end{align*}
\]

- **Inference engine:**
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)
Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form.

- Key aspects of knowledge representation languages:
 - **Syntax**: describes how sentences are formed in the language.
 - **Semantics**: describes the meaning of sentences, what is it the sentence refers to in the real world.
 - **Computational aspect**: describes how sentences and objects are manipulated in concordance with semantical conventions.

Many KB systems rely on some variant of logic.

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.

- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with values.

- **The valuation (meaning) function** V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation.

$$V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True}, \text{False}\}$$
Example of logic

Language of numerical constraints:

• A sentence:
 \[x + 3 \leq z \]
 \(x, z \) - variable symbols (primitives in the language)

• An interpretation:
 I: \(x = 5, z = 2 \)
 Variables mapped to specific real numbers

• Valuation (meaning) function \(V \):
 \[V (x + 3 \leq z, I) \] is \textit{False} for I: \(x = 5, z = 2 \)
 is \textit{True} for I: \(x = 5, z = 10 \)

Types of logic

• Different types of logics possible:
 – Propositional logic
 – First-order logic
 – Temporal logic
 – Numerical constraints logic
 – Map-coloring logic

In the following:

• **Propositional logic.**
 – Formal language for making logical inferences
 – Foundations of \textit{propositional logic: George Boole} (1854)
Propositional logic. Syntax

- **Propositional logic P:**
 - defines a language for symbolic reasoning

- **Proposition:** a statement that is either true or false

- **Examples of propositions:**
 - *Pitt is located in the Oakland section of Pittsburgh.*
 - *France is in Europe.*
 - *It rains outside.*
 - *2 is a prime number and 6 is a prime*
 - *How are you?* Not a proposition.

Propositional logic. Syntax

- **Formally propositional logic P:**
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- **Symbols (alphabet)** in P:
 - **Constants:** *True, False*
 - **Propositional symbols**
 - Examples:
 - *P*
 - *Pitt is located in the Oakland section of Pittsburgh.*
 - *It rains outside.* etc.
 - **A set of connectives:**
 - $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
Propositional logic. Syntax

Sentences in the propositional logic:

- **Atomic sentences:**
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - \(P \cdot Q \) or Light in the room is on, It rains outside are (atomic) sentences

- **Composite sentences:**
 - Constructed from valid sentences via connectives
 - If \(A, B \) are sentences then
 \(-A, (A \land B), (A \lor B), (A \Rightarrow B), (A \Leftrightarrow B)\)
 or \((A \lor B) \land (A \lor \neg B)\)
 - are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of connectives**
 - Meaning (semantics) of composite sentences
Semantic: propositional symbols

A propositional symbol
• a statement about the world that is either true or false

Examples:
– Pitt is located in the Oakland section of Pittsburgh
– It rains outside
– Light in the room is on

• An interpretation maps symbols to one of the two values: True (T), or False (F), depending on whether the symbol is satisfied in the world

I: Light in the room is on -> True, It rains outside -> False
I’: Light in the room is on -> False, It rains outside -> False

Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False

\[V(\text{Light in the room is on, } \mathbf{I}) = \text{True} \]
\[V(\text{It rains outside, } \mathbf{I}) = \text{False} \]

I’: Light in the room is on -> False, It rains outside -> False

\[V(\text{Light in the room is on, } \mathbf{I’}) = \text{False} \]
Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding $True, False$

\[
V(\text{True, } I) = True \\
V(\text{False, } I) = False
\]

For any interpretation I

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:

• \(p \): It is sunny this afternoon
• \(q \): it is colder than yesterday
• \(r \): We will go swimming
• \(s \): we will take a canoe trip
• \(t \): We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:
• **Contradiction** (always False)
 \[P \land \neg P \]
• **Tautology** (always True)
 \[P \lor \neg P \]

\[
\neg (P \lor Q) \iff (\neg P \land \neg Q) \\
\neg (P \land Q) \iff (\neg P \lor \neg Q)
\]

\(\text{DeMorgan’s Laws} \)
Model, validity and satisfiability

- A **model (in logic)**: An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.

- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
<th>(P \lor Q) \land \neg Q</th>
<th>((P \lor Q) \land \neg Q) \Rightarrow P</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Model, validity and satisfiability

- A **model (in logic)**: An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$(P \lor Q) \land \neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$(P \lor Q) \land \neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Entailment

- **Entailment** reflects the relation of one fact in the world following from the others

- Entailment $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

Sound and complete inference.

Inference is a process by which conclusions are reached.
- We want to implement the inference process on a computer!!

Assume an **inference procedure** i that
- derives a sentence α from the KB: $KB \models_i \alpha$

Properties of the inference procedure in terms of entailment
- **Soundness:** An inference procedure is **sound**

 If $KB \models_i \alpha$ then it is true that $KB \models \alpha$

- **Completeness:** An inference procedure is **complete**

 If $KB \models \alpha$ then it is true that $KB \models_i \alpha$
Logical inference problem

Logical inference problem:
• Given:
 – a knowledge base KB (a set of sentences) and
 – a sentence \(\alpha \) (called a theorem),
• Does a KB semantically entail \(\alpha ? \) \(KB \models \alpha \) ?

In other words: In all interpretations in which sentences in the KB are true, is also \(\alpha \) true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha \]?

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem
 – Resolution-refutation
Truth-table approach

Problem: $KB \models \alpha$?

- We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \iff Q$</th>
<th>$(P \lor \neg Q) \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Truth-table approach

Problem: \(KB \models \alpha \) ?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them.

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols).

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence \(\alpha \) evaluates to true whenever \(KB \) evaluates to true.

Example: \(KB = (A \lor C) \land (B \lor \neg C) \) \(\alpha = (A \lor B) \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(A \lor C)</th>
<th>((B \lor \neg C))</th>
<th>(KB)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations

2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \lnot C)$, $\alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \lnot C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Truth-table approach

\[KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B) \]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A \lor C</td>
<td>(B \lor \neg C)</td>
<td>KB</td>
<td>\alpha</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

KB entails \(\alpha \)

- The **truth-table approach** is **sound and complete** for the propositional logic!!

Limitations of the truth table approach.

\[KB \models \alpha ? \]

What is the computational complexity of the truth table approach?

- ?
Limitations of the truth table approach.

$KB \models \alpha$?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

2^n Rows in the table has to be filled

But typically only for a small subset of rows the KB is true
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset
Inference rules approach.

\[KB \models \alpha \, ? \]

Problem with the truth table approach:

- The truth table is \textit{exponential} in the number of propositional symbols (we checked all assignments).
- KB is true on only a smaller subset.

How to make the process more efficient?

Solution: check only entries for which KB is \textit{True}.

This is the idea behind the inference rules approach.

Inference rules:

- Represent sound inference patterns repeated in inferences.
- Can be used to generate new (sound) sentences from the existing ones.

Inference rules for logic

- Modus ponens

\[
A \Rightarrow B, \quad A \quad \quad \text{premise}
\]

\[
B \quad \quad \quad \text{conclusion}
\]

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is \textit{sound}.
 - We can prove this through the truth table.

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \Rightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Inference rules for logic

• And-elimination

\[A_1 \wedge A_2 \wedge A_n \quad A_i \]

• And-introduction

\[A_1, A_2, A_n \quad A_1 \wedge A_2 \wedge A_n \]

• Or-introduction

\[A_i \quad A_1 \vee A_2 \vee \ldots A_i \vee A_n \]

Inference rules for logic

• Elimination of double negation

\[\neg\neg A \quad A \]

• Unit resolution

\[A \vee B, \neg A \quad B \]

• Resolution

\[A \vee B, \neg B \vee C \quad A \vee C \]

• All of the above inference rules are sound. We can prove this through the truth table, similarly to the modus ponens case.
Example. Inference rules approach.

KB: $P \land Q$ \hspace{0.5cm} $P \Rightarrow R$ \hspace{0.5cm} $(Q \land R) \Rightarrow S$ \hspace{0.5cm} **Theorem:** S

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$

Example. Inference rules approach.

KB: $P \land Q$ \hspace{0.5cm} $P \Rightarrow R$ \hspace{0.5cm} $(Q \land R) \Rightarrow S$ \hspace{0.5cm} **Theorem:** S

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P \hspace{1cm} From 1 and And-elim

 \[
 \frac{A_1 \land A_2 \land \ldots \land A_n}{A_i}
 \]
Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem:} \ S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \)
5. \(R \quad \text{From } 2, 4 \text{ and Modus ponens} \)
 \[
 \frac{A \Rightarrow B, \ A}{B}
 \]

6. \(Q \quad \text{From } 1 \text{ and And-elim} \)
 \[
 \frac{A_1 \land A_2 \land \ldots \land A_n}{A_i}
 \]
Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \land R)$ \hspace{1cm} \text{From 5,6 and And-introduction}
 \hspace{1cm} \frac{A_1, A_2, \ldots, A_n}{A_1 \land A_2 \land \cdots \land A_n}$

Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S$

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \land R)$ \hspace{1cm} \text{From 7,3 and Modus ponens}
8. S \hspace{1cm} \text{Proved: } S
Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \textbf{Theorem:} S$

1. $P \land Q$
2. $P \Rightarrow R$
3. $(Q \land R) \Rightarrow S$
4. P \hspace{1cm} From 1 and And-elim
5. R \hspace{1cm} From 2,4 and Modus ponens
6. Q \hspace{1cm} From 1 and And-elim
7. $(Q \land R)$ \hspace{1cm} From 5,6 and And-introduction
8. S \hspace{1cm} From 7,3 and Modus ponens

Proved: S

Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

CS 2710 Foundations of AI
Logic inferences and search

• To show that theorem α holds for a KB
 – we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next

Looks familiar?

This is an instance of a search problem:

Truth table method (from the search perspective):
 – blind enumeration and checking

Inference rule method as a search problem:

• State: a set of sentences that are known to be true
• Initial state: a set of sentences in the KB
• Operators: applications of inference rules
 – Allow us to add new sound sentences to old ones
• Goal state: a theorem α is derived from KB

Logic inference:

• Proof: A sequence of sentences that are immediate consequences of applied inference rules
• Theorem proving: process of finding a proof of theorem