Constraint-satisfaction search

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Search problem

A search problem:
• Search space (or state space): a set of objects among which we conduct the search;
• Initial state: an object we start to search from;
• Operators (actions): transform one state in the search space to the other;
• Goal condition: describes the object we search for

• Possible metric on a search space:
 – measures the quality of the object with regard to the goal

Search problems occur in planning, optimizations, learning
Constraint satisfaction problem (CSP)

Constraint satisfaction problem (CSP) is a configuration search problem where:
• A state is defined by a set of variables
• Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP allow more specific procedures to be designed and applied for solving them

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
• Represent queens, one for each column:
 – Q_1, Q_2, Q_3, Q_4
• Values:
 – Row placement of each queen on the board
 {1, 2, 3, 4}

Constraints: $Q_i \neq Q_j$ Two queens not in the same row

$|Q_i - Q_j| \neq |i - j|$ Two queens not on the same diagonal
Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)
- Used in the propositional logic (covered later)

\[(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)\]...

Variables:
- Propositional symbols (P, R, T, S)
- Values: True, False

Constraints:
- Every conjunct must evaluate to true, at least one of the literals must evaluate to true

\[(P \lor Q \lor \neg R) \equiv True , (\neg P \lor \neg R \lor S) \equiv True ,\ldots\]

Other real world CSP problems

Scheduling problems:
- E.g. telescope scheduling
- High-school class schedule

Design problems:
- Hardware configurations
- VLSI design

More complex problems may involve:
- **real-valued variables**
- **additional preferences on variable assignments** – the optimal configuration is sought
Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:

- Variable values:

Constraints:
Map coloring

Color a map using \(k \) different colors such that no adjacent countries have the same color.

Variables:
- Represent countries
 - \(A, B, C, D, E \)
- Values:
 - \(k \)-different colors
 - \{Red, Blue, Green,..\}

Constraints: \(A \neq B, A \neq C, C \neq E, \) etc
An example of a problem with **binary constraints**

Constraint satisfaction as a search problem

Formulation of a CSP as a search problem:
- **States.** Assignments(partial, complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- **Goal condition.** All variables are assigned, no constraints are violated.

- **Constraints** can be represented:
 - **Explicitly** by a set of allowable values
 - **Implicitly** by a function that tests for the satisfaction of constraints
Solving CSP as a standard search

Unassigned: \(Q_1, Q_2, Q_3, Q_4 \)
Assigned:

Unassigned: \(Q_2, Q_1, Q_4 \)
Assigned: \(Q_1 = 1 \)

Unassigned: \(Q_2, Q_1, Q_4 \)
Assigned: \(Q_1 = 2 \)

Unassigned: \(Q_3, Q_4 \)
Assigned: \(Q_1 = 2, Q_2 = 4 \)

Solving a CSP through standard search

- Maximum depth of the tree (m): ?
- Depth of the solution (d): ?
- Branching factor (b): ?

Unassigned: \(Q_1, Q_2, Q_3, Q_4 \)
Assigned:

Unassigned: \(Q_2, Q_3, Q_4 \)
Assigned: \(Q_1 = 1 \)

Unassigned: \(Q_2, Q_3, Q_4 \)
Assigned: \(Q_1 = 2 \)

Unassigned: \(Q_3, Q_4 \)
Assigned: \(Q_1 = 2, Q_2 = 4 \)

Solving a CSP through standard search

- **Maximum depth of the tree**: Number of variables of the CSP
- **Depth of the solution**: Number of variables of the CSP
- **Branching factor**: If we fix the order of variable assignments, the branch factor depends on the number of their values

Depth of the tree $= \text{Depth of the solution} = \text{number of vars}$

Solving a CSP through standard search

- **What search algorithm to use?**
 Depth of the tree $= \text{Depth of the solution} = \text{number of vars}$
Solving a CSP through standard search

- **What search algorithm to use:** Depth first search
 - Since we know the depth of the solution
 - **DFS in context of CSP is also referred to as backtracking**

Checking constraint consistency

The violation of constraints needs to be checked for each node, either during its generation or before its expansion

Consistency of constraints:
- Current **variable assignments** together with constraints restrict remaining legal values of unassigned variables;
- The remaining **legal and illegal values of variables may be inferred** (effect of constraints propagates)
- To prevent “blind” search space exploration it is necessary to keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search
Constraint propagation

A **state** (more broadly) is defined by a set of variables and their legal and illegal assignments.

Legal and illegal assignments can be represented through variable **equations** and variable **disequations**.

Example: map coloring

Equation \(A = \text{Red} \)

Disequation \(C \neq \text{Red} \)

Constraints + assignments

Can entail new equations and disequations:

\[A = \text{Red} \rightarrow B \neq \text{Red} \]

Constraint propagation: the process of inferring new equations and disequations from existing equations and disequations.

Constraint propagation

- Assign A=Red

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- equations ✓

- disequations ×
Constraint propagation

- Assign A=Red

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - equations ✗ - disequations

Constraint propagation

- Assign E=Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Constraint propagation

- Assign E=Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>

Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Conflict !!! No legal assignments available for B and C
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green
C=Green

Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green ➔ F=Red
C=Green

CS 2710 Foundations of AI
Constraint propagation

• We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green F=Red
C=Green

Constraint propagation

Three known techniques for propagating the effects of past assignments and constraints:

• **Value propagation**
• **Arc consistency**
• **Forward checking**

• **Difference:**
 – Completeness of inferences
 – Time complexity of inferences.
Constraint propagation

1. **Value propagation.** Infers:
 - equations from the set of equations defining the partial assignment, and a constraint

2. **Arc consistency.** Infers:
 - disequations from the set of equations and disequations defining the partial assignment, and a constraint
 - equations through the exhaustion of alternatives

3. **Forward checking.** Infers:
 - disequations from a set of equations defining the partial assignment, and a constraint
 - Equations through the exhaustion of alternatives

 Restricted forward checking:
 - uses only active constraints (active constraint – only one variable unassigned in the constraint)

Value propagation: analysis

Value propagation. Infers:
- equations from the set of equations defining the partial assignment, and a constraint

Procedure:
- At every step, after a new variable gets assigned a value we check if a constrain does not imply a new equation on yet to be assigned variable.
 - A set of equations may be inferred
Forward checking: analysis

Forward checking. Infers:
- **disequations from** a set of **equations** defining the partial assignment, and a constraint
- **Equations through the exhaustion of alternatives**

Procedure:
- At every step, after a new variable gets assigned a value (a new equation is created) we check a constraint if it does not imply a new disequation on yet to be assigned variable.
- After all possible disequations are derived we check if a new equation is not implied by a set of disequations.
- And repeat till no new derivations can be made.

- A set of disequations and equations may be inferred

Arc consistency: analysis

Arc consistency. Infers:
- **disequations from** the set of **equations and disequations** defining the partial assignment, and a **constraint**
- **equations through the exhaustion of alternatives**

Procedure:
- At every step, after a new equation or a disequation is generated we need to check constraints if a new disequation is not implied on yet to be assigned variable.
- After all possible disequations are derived we check if a new equation is not implied by a set of disequations.
- And repeat till no new derivations are possible.

- A set of disequations and equations may be inferred
Heuristics for CSPs

Backtracking searches the space in the depth-first manner. But we still can choose:
• Which variable to assign next?
• Which value to choose first?

Heuristics
• Most constrained variable
 – Which variable is likely to become a bottleneck?
• Least constraining value
 – Which value gives us more flexibility later?

Examples: map coloring

Heuristics
• Most constrained variable
 – Country E is the most constrained one (cannot use Red, Green)
• Least constraining value
 – Assume we have chosen variable C
 – Red is the least constraining valid color for the future