First-order logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

- PS-5 is out

Midterm:
- October 24, 2005
- In class
- Closed book
- Covers:
 - Search, Knowledge Representation and Planning
Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them.

Propositional logic:
- Represents statements about the world without reflecting this structure and without modeling these entities explicitly.

Consequence:
- Some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

First-order logic (FOL)

- More expressive than propositional logic.

- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object;
 - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately.
Logic

Logic is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.
- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- **The valuation (meaning) function** V
 - Assigns a truth value to a given sentence under some interpretation.
 $$V : \text{sentence } \times \text{interpretation} \rightarrow \{\text{True }, \text{False }\}$$

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:
- **Constant symbols**: represent specific objects
 - Examples: John, France, car89

- **Variables** – represents object of specific type (defined by the universe of discourse)
 - Examples: x, y
 - (universe of discourse can be people, students, cars)

- **Functions** applied to one or more terms
 - Examples: $\text{father-of}(\text{John})$, $\text{father-of(father-of(John))}$
First order logic. Syntax.

- Terms do not define propositions (they cannot be evaluated to True or False)

Sentences in FOL define propositions:

- **Atomic sentences:**
 - A **predicate symbol** applied to 0 or more terms

 Examples:

 - `Red(car12),`
 - `Sister(Amy, Jane);`
 - `Manager(father-of(John));`

 - `t1 = t2` **equivalence** of terms

 Example:

 - `John = father-of(Peter)`

First order logic. Syntax.

Sentences in FOL:

- **Complex sentences:**
 - Assume \(\phi, \psi \) are sentences in FOL. Then:
 - \((\phi \land \psi) \) \((\phi \lor \psi) \) \((\phi \Rightarrow \psi) \) \((\phi \iff \psi) \) \(\neg \psi \)

 and

 - \(\forall x \phi \) \(\exists y \phi \)

 are sentences

Symbols `\exists, \forall`

- stand for the **existential** and the **universal** quantifier
Semantics. Interpretation.

An interpretation I is defined by a mapping to the \textbf{domain of discourse} D or relations on D

- \textbf{domain of discourse}: a set of objects in the world we represent and refer to;

\textbf{An interpretation I maps}:

- Constant symbols to objects in D
 \[I(\text{John}) = \] \[I(\text{Paul}) = \]

- Predicate symbols to relations, properties on D
 \[I(\text{brother}) = \{ \langle \text{John} \text{ Paul} \rangle; \langle \text{Paul} \text{ John} \rangle; \ldots \} \]

- Function symbols to functional relations on D
 \[I(\text{father-of}) = \{ \langle \text{John} \rightarrow \text{Paul} \rangle; \langle \text{Paul} \rightarrow \text{John} \rangle; \ldots \} \]

Semantics of sentences.

\textbf{Meaning (evaluation) function}:

\[V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True} , \text{False} \} \]

A \textbf{predicate} $\text{predicate}(\text{term-1, term-2, term-3, term-n})$ is true for the interpretation I, iff the objects referred to by $\text{term-1, term-2, term-3, term-n}$ are in the relation referred to by predicate

\[I(\text{John}) = \] \[I(\text{Paul}) = \]

\[I(\text{brother}) = \{ \langle \text{John} \text{ Paul} \rangle; \langle \text{Paul} \text{ John} \rangle; \ldots \} \]

\[\text{brother(John, Paul)} = \langle \text{John} \text{ Paul} \rangle \quad \text{in} \ I(\text{brother}) \]

\[V(\text{brother(John, Paul)}, I) = \text{True} \]
Semantics of sentences.

- **Equality**
 \[V(\text{term-1} = \text{term-2}, I) = \text{True} \]
 If \(I(\text{term-1}) = I(\text{term-2}) \)

- **Boolean expressions**: standard

 E.g. \(V(\text{sentence-1} \lor \text{sentence-2}, I) = \text{True} \)

 If \(V(\text{sentence-1},I) = \text{True} \) or \(V(\text{sentence-2},I) = \text{True} \)

- **Quantifications**

 \[V(\forall x \phi, I) = \text{True} \]

 If \(\text{for all } d \in D \ V(\phi, I[x/d]) = \text{True} \)

 \[V(\exists x \phi, I) = \text{True} \]

 If \(\text{there is a } d \in D \), s.t. \(V(\phi, I[x/d]) = \text{True} \)

Sentences with quantifiers

- **Universal quantification**

 All Upitt students are smart

 - Assume the universe of discourse of x are Upitt students
Sentences with quantifiers

• **Universal quantification**

 All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 \[\forall x \text{ smart}(x) \]
Sentences with quantifiers

• **Universal quantification**

 \[\forall x \text{ smart}(x) \]

 All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 \[\forall x \text{ smart}(x) \]

• Assume the universe of discourse of x are students

 \[\forall x \text{ at}(x, \text{Upitt}) \Rightarrow \text{smart}(x) \]

• Assume the universe of discourse of x are people
Sentences with quantifiers

- **Universal quantification**

 All Upitt students are smart

 - Assume the universe of discourse of x are Upitt students

 \[\forall x \text{ smart}(x) \]

 - Assume the universe of discourse of x are students

 \[\forall x \text{ at}(x, \text{Upitt}) \implies \text{smart}(x) \]

 - Assume the universe of discourse of x are people

 \[\forall x \text{ student}(x) \land \text{at}(x, \text{Upitt}) \implies \text{smart}(x) \]

 Typically the universal quantifier connects with an implication
Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

\[\exists x \ (at(x, CMU) \land \text{smart}(x)) \]
Sentences with quantifiers

• **Existential quantification**

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

\[\exists x \ at(x,CMU) \land smart(x) \]

• Assume the universe of discourse of x are people

\[\exists x \ at(x,CMU) \land smart(x) \]
Sentences with quantifiers

- **Existential quantification**

 Someone at CMU is smart

 \[\exists x \at(x, CMU) \land \text{smart}(x) \]

- Assume the universe of discourse of \(x \) are CMU affiliates

 \[\exists x \at(x, CMU) \land \text{smart}(x) \]

- Assume the universe of discourse of \(x \) are people

 \[\exists x \at(x, CMU) \land \text{smart}(x) \]

 Typically the existential quantifier connects with a conjunction

Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all \(x \) and \(y \), if \(x \) is a parent of \(y \) then \(y \) is a child of \(x \)

 \[\forall x, y \parent (x, y) \Rightarrow \child (y, x) \]

 \[\forall y, x \parent (x, y) \Rightarrow \child (y, x) \]

- **Order of different quantifiers changes the meaning**

 \[\forall x \exists y \loves (x, y) \]
Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 \[
 \forall x, y \text{ parent } (x, y) \implies \text{ child } (y, x) \\
 \forall y, x \text{ parent } (x, y) \implies \text{ child } (y, x)
 \]

- **Order of different quantifiers changes the meaning**

 \[
 \forall x \exists y \text{ loves } (x, y) \\
 \text{Everybody loves somebody}
 \]

 \[
 \exists y \forall x \text{ loves } (x, y)
 \]

Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 \[
 \forall x, y \text{ parent } (x, y) \implies \text{ child } (y, x) \\
 \forall y, x \text{ parent } (x, y) \implies \text{ child } (y, x)
 \]

- **Order of different quantifiers changes the meaning**

 \[
 \forall x \exists y \text{ loves } (x, y) \\
 \text{Everybody loves somebody}
 \]

 \[
 \exists y \forall x \text{ loves } (x, y) \\
 \text{There is someone who is loved by everyone}
 \]
Connections between quantifiers

Everyone likes ice cream

\(\forall x \text{ likes } (x, \text{IceCream}) \)
Connections between quantifiers

\[\forall x \text{ likes } (x, \text{IceCream}) \]

Is it possible to convey the same meaning using an existential quantifier?

\[\neg \exists x \neg \text{likes } (x, \text{IceCream}) \]

A universal quantifier in the sentence can be expressed using an existential quantifier !!!
Connections between quantifiers

Someone likes ice cream

?

Is it possible to convey the same meaning using a universal quantifier?

∃x likes (x, IceCream)
Connections between quantifiers

Someone likes ice cream

\[\exists x \text{ likes } (x, \text{IceCream}) \]

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

\[\neg \forall x \neg \text{likes } (x, \text{IceCream}) \]

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

Representing knowledge in FOL

Example:

Kinship domain

- **Objects:** people
 - John, Mary, Jane, …
- **Properties:**
 - Male \((x)\), Female \((x)\)
- **Relations:**
 - parenthood, brotherhood, marriage
 - Parent \((x, y)\), Brother \((x, y)\), Spouse \((x, y)\)
- **Functions:** mother-of (one for each person \(x\))
 - MotherOf \((x)\)
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
 \[\forall x \text{ Male} (x) \iff \neg \text{Female} (x) \]
- Parent and child relations are inverse
 \[\forall x, y \text{ Parent} (x, y) \iff \text{Child} (y, x) \]
- A grandparent is a parent of parent
 \[\forall g, c \text{ Grandparent}(g, c) \iff \exists p \text{ Parent}(g, p) \land \text{Parent}(p, c) \]
- A sibling is another child of one’s parents
 \[\forall x, y \text{ Sibling} (x, y) \iff (x \neq y) \land \exists p \text{ Parent} (p, x) \land \text{ Parent} (p, y) \]
- And so on ….

Inference in First order logic
Logical inference in FOL

Logical inference problem:
• Given a knowledge base KB (a set of sentences) and a sentence α, does the KB semantically entail α?

$$KB \models \alpha$$

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!!: No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

Logical inference problem in the Propositional logic

Computational procedures that answer:

$$KB \models \alpha$$

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem
 – Resolution-refutation
Inference in FOL: Truth table

• Is the Truth-table approach a viable approach for the FOL?

?

Inference in FOL: Truth table approach

• Is the Truth-table approach a viable approach for the FOL?

• NO!

• Why?
• It would require us to enumerate and list all possible interpretations I
• I = (assignments of symbols to objects, predicates to relations and functions to relational mappings)
• Simply there are too many interpretations
Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

• Yes.

• The inference rules represent sound inference patterns one can apply to sentences in the KB

• What is derived follows from the KB

• Caveat: we need to add rules for handling quantifiers
Inference rules

• Inference rules from the propositional logic:
 – Modus ponens
 \[
 \frac{A \Rightarrow B, \ A}{B}
 \]
 – Resolution
 \[
 \frac{A \lor B, \ \neg B \lor C}{A \lor C}
 \]
 – and others: And-introduction, And-elimination, Or-introduction, Negation elimination

• Additional inference rules are needed for sentences with quantifiers and variables
 – Must involve variable substitutions

Sentences with variables

First-order logic sentences can include variables.

• Variable is:
 – Bound – if it is in the scope of some quantifier
 \[
 \forall x \ P(x)
 \]
 – Free – if it is not bound.
 \[
 \exists x \ P(y) \land Q(x) \quad y \text{ is free}
 \]

• Sentence (formula) is:
 – Closed – if it has no free variables
 \[
 \forall y \exists x \ P(y) \Rightarrow Q(x)
 \]
 – Open – if it is not closed
 – Ground – if it does not have any variables
 \[
 Likes(John, Jane)
 \]
Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)

- **Substitution:**
 - Is represented by a mapping from variables to terms
 \[\{x_1 / t_1, x_2 / t_2, \ldots\} \]
 - Application of the substitution to sentences
 \[
 \text{SUBST}(\{x / Sam, y / Pam\}, \text{Likes}(x,y)) = \text{Likes}(Sam, Pam)
 \]
 \[
 \text{SUBST}(\{x / z, y / fatherof(John)\}, \text{Likes}(x,y)) = \text{Likes}(z, fatherof(John))
 \]

Inference rules for quantifiers

- **Universal elimination**
 \[
 \frac{\forall x \, \phi(x)}{\phi(a)} \quad a \text{ - is a constant symbol}
 \]
 - Substitutes a variable with a constant symbol
 \[
 \forall x \, \text{Likes}(x, \text{IceCream}) \quad \text{Likes}(Ben, \text{IceCream})
 \]

- **Existential elimination.**
 \[
 \frac{\exists x \, \phi(x)}{\phi(a)}
 \]
 - Substitutes a variable with a constant symbol that does not appear elsewhere in the KB
 \[
 \exists x \, \text{Kill}(x, \text{Victim}) \quad \text{Kill}(\text{Murderer, Victim})
 \]