Knowledge Representation.
Propositional logic

Knowledge-based agent

- Knowledge base (KB):
 - Knowledge that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent
Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- **Knowledge base** represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The stain of the organism is gram-positive, and</td>
<td></td>
</tr>
<tr>
<td>2. The morphology of the organism is coccus, and</td>
<td></td>
</tr>
<tr>
<td>3. The growth conformation of the organism is chains</td>
<td></td>
</tr>
<tr>
<td>the identity of the organism is streptococcus</td>
<td></td>
</tr>
</tbody>
</table>

- **Inference engine:**
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge representation

- **Objective:** express the knowledge about the world in a computer-tractable form
- **Knowledge representation languages (KRLs)**
 Key aspects:
 - **Syntax:** describes how sentences in KRL are formed in the language
 - **Semantics:** describes the meaning of sentences, what is it the sentence refers to in the real world
 - **Computational aspect:** describes how sentences and objects in KRL are manipulated in concordance with semantic conventions

Many KB systems rely on and implement some variant of logic
Logic

A formal language for expressing knowledge and for making logical inferences

Defined by:

- **A set of sentences:** A sentence is constructed from a set of primitives according to **syntactic rules**
- **A set of interpretations:** An interpretation I gives a semantic to primitives. It associates primitives with objects or values
 - I: primitives \rightarrow objects/values
- **The valuation (meaning) function** V:
 - Assigns a value (typically the truth value) to a given sentence under some interpretation
 $$V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True, False}\}$$

Propositional logic

- The simplest logic

- **Definition:**
 - A proposition is a statement that is either true or false.

- **Examples:**
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
Propositional logic

• The simplest logic

• **Definition:**
 – A **proposition** is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – $5 + 2 = 8$.
 • (?)
Propositional logic

• The simplest logic

• **Definition:**
 – A proposition is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – $5 + 2 = 8$.
 • (F)
 – It is raining today.
 • (either T or F)

• Examples (cont.):
 – How are you?
 • ?
Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - $x + 5 = 3$
 - ?

- 2 is a prime number.
 - ?
Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - $x + 5 = 3$
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:
- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols
 - Examples:
 - P
 - Pitt is located in the Oakland section of Pittsburgh,
 - It rains outside, etc.
 - A set of connectives:
 $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
Propositional logic. Syntax

Sentences in the propositional logic:
- **Atomic sentences:**
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - \(P, Q \) or Light in the room is on, It rains outside are (atomic) sentences
- **Composite sentences:**
 - Constructed from valid sentences via logical connectives
 - If \(A, B \) are sentences then
 \[
 \neg A \quad (A \land B) \quad (A \lor B) \quad (A \Rightarrow B) \quad (A \Leftrightarrow B)
 \]
 or
 \[
 (A \lor B) \land (A \lor \neg B)
 \]
 are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of logical connectives**
 - Meaning (semantics) of composite sentences
Semantic: propositional symbols

A **propositional symbol**
- a statement about the world that is either true or false

Examples:
- Pitt is located in the Oakland section of Pittsburgh
- It rains outside
- Light in the room is on

- An **interpretation** maps symbols to one of the two values: **True** (T), or **False** (F), depending on whether the symbol is satisfied in the world

I: Light in the room is on -> **True**, It rains outside -> **False**

I': Light in the room is on -> **False**, It rains outside -> **False**

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> **True**, It rains outside -> **False**

\[V(\text{Light in the room is on}, I) = \text{True} \]

\[V(\text{It rains outside}, I) = \text{False} \]

I': Light in the room is on -> **False**, It rains outside -> **False**

\[V(\text{Light in the room is on}, I') = \text{False} \]

<table>
<thead>
<tr>
<th>Interpretations</th>
<th>Meanings (values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light in the room is on</td>
<td>It rains outside</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

M. Hauskrecht
Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True, False value

\[
V(\text{True}, I) = \text{True} \quad \text{For any interpretation } I \\
V(\text{False}, I) = \text{False}
\]

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>¬P</th>
<th>P \land Q</th>
<th>P \lor Q</th>
<th>P \Rightarrow Q</th>
<th>P \Leftrightarrow Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Translation

Translation of English sentences to propositional logic:
(1) identify atomic sentences that are propositions
(2) Use logical connectives to translate more complex composite sentences that consist of many atomic sentences

Assume the following sentence:
• It is not sunny this afternoon and it is colder than yesterday.

Atomic sentences:
• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday

Translation: \(\neg p \land q \)

Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday.
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday
• \(r = \) We will go swimming
• \(s = \) we will take a canoe trip
• \(t = \) We will be home by sunset
Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- \(p = \) It is sunny this afternoon
- \(q = \) it is colder than yesterday
- \(r = \) We will go swimming
- \(s = \) we will take a canoe trip
- \(t = \) We will be home by sunset

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
- We will go swimming only if it is sunny. \(r \rightarrow p \)
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- \(p = \) It is sunny this afternoon
- \(q = \) it is colder than yesterday
- \(r = \) We will go swimming
- \(s = \) we will take a canoe trip
- \(t = \) We will be home by sunset
Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
- We will go swimming only if it is sunny. \(r \rightarrow p \)
- If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
- If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:

- \(p \) = It is sunny this afternoon
- \(q \) = it is colder than yesterday
- \(r \) = We will go swimming
- \(s \) = we will take a canoe trip
- \(t \) = We will be home by sunset
Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

- **Contradiction** (always *False*)
 \[P \land \neg P \]

- **Tautology** (always *True*)
 \[P \lor \neg P \]

\[\neg(P \lor Q) \iff (\neg P \land \neg Q) \]
\[\neg(P \land Q) \iff (\neg P \lor \neg Q) \]

DeMorgan’s Laws

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- **Example 1:**
 - **Primitives:** \(P, Q \)
 - **Sentence:** \(P \lor Q \)
 - **Interpretations:**
 - \(P \Rightarrow True, Q \Rightarrow True \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

• An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.

• **Example 1:**
 • Primitives: P, Q
 • Sentence: $P ∨ Q$
 • Interpretations: Model ?
 - $P → True$, $Q → True$ Yes
 - $P → True$, $Q → False$?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P ∨ Q$</th>
<th>$(P ∨ Q) ∧ ¬Q$</th>
<th>$((P ∨ Q) ∧ ¬Q) ⇒ P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

• An interpretation \textbf{is a model for a set of sentences} if it assigns true to each sentence in the set.

• \textbf{Example 1:}

 – Primitives: P, Q

 – Sentence: $P \lor Q$

 – Interpretations: Model ?

 \begin{itemize}
 \item $P \rightarrow \text{True, } Q \rightarrow \text{True} \quad \text{Yes}
 \item $P \rightarrow \text{True, } Q \rightarrow \text{False} \quad \text{Yes}
 \item $P \rightarrow \text{False, } Q \rightarrow \text{False} \quad \text{No}
 \end{itemize}

\begin{tabular}{|c|c|c|c|c|}
\hline
P & Q & $P \lor Q$ & $(P \lor Q) \land \neg Q$ & $((P \lor Q) \land \neg Q) \Rightarrow P$ \\
\hline
True & True & True & False & True \\
True & False & True & True & True \\
False & True & True & False & True \\
False & False & False & False & True \\
\hline
\end{tabular}

\textbf{Example 2:}

– Primitives: P, Q

– Sentences: $P \lor Q$

\begin{itemize}
\item $(P \lor Q) \land \neg Q$
\item $((P \lor Q) \land \neg Q) \Rightarrow P$
\end{itemize}

– Is there a model?

\begin{tabular}{|c|c|c|c|c|}
\hline
P & Q & $P \lor Q$ & $(P \lor Q) \land \neg Q$ & $((P \lor Q) \land \neg Q) \Rightarrow P$ \\
\hline
True & True & True & False & True \\
True & False & True & True & True \\
False & True & True & False & True \\
False & False & False & False & True \\
\hline
\end{tabular}
Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• Example 2:
 – Primitives: P, Q
 – Sentences:
 $P \lor Q$
 $\neg Q$
 $((P \lor Q) \land \neg Q) \Rightarrow P$

 – Is there a model? Yes $P \Rightarrow True$ $Q \Rightarrow False$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$\neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

M. Hauskrecht

Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• A sentence is satisfiable if it has a model;
 – There is at least one interpretation under which the sentence can evaluate to True

• Example:
 – Sentence: $((P \lor Q) \land \neg Q)$
 – Satisfiable?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$\neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

M. Hauskrecht
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True
- Example:
 - Sentence: \((P \lor Q) \land \neg Q\)
 - Satisfiable? Yes True for \(P \Rightarrow True, Q \Rightarrow False\)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>(P ∨ Q) ∧ ¬Q</th>
<th>((P ∨ Q) ∧ ¬Q) ⇒ P</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

valid sentence ?

Entailment

- Entailment reflects the relation of one fact in the world following from the others

\[KB | = \alpha \]

- Knowledge base KB entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where KB is true
Sound and complete inference

Inference is a process by which new sentences are derived from existing sentences in the KB
• the inference process is implemented on a computer

Assume an inference procedure \(i \) that
• derives a sentence \(\alpha \) from the KB: \(KB \vdash_i \alpha \)

Properties of the inference procedure in terms of entailment
• **Soundness:** An inference procedure is sound
 \[\text{If} \quad KB \vdash_i \alpha \quad \text{then it is true that} \quad KB \models \alpha \]

• **Completeness:** An inference procedure is complete
 \[\text{If} \quad KB \models \alpha \quad \text{then it is true that} \quad KB \vdash_i \alpha \]

Logical inference problem

Logical inference problem:
• **Given:**
 – a knowledge base KB (a set of sentences) and
 – a sentence \(\alpha \) (called a theorem),
• **Does a KB semantically entail \(\alpha \)? \(KB \models \alpha \)?
In other words: In all interpretations in which sentences in the KB are true, is also \(\alpha \) true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.
Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha ? \]

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

Truth-table approach

Problem: \[KB \models \alpha ? \]

- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:

- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

Problem: $KB |\models \alpha$?
- We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th></th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$P \lor Q$</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Truth-table approach

Problem: $KB |\models \alpha$?
- We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th></th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$P \lor Q$</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

![✔️]
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\quad \alpha = (A \lor B)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

• The truth-table approach is sound and complete for the propositional logic!!
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

- What is the computational complexity of the truth table approach?
- ?

Exponential in the number of the propositional symbols

\[2^n \]

Rows in the table have to be filled
- the truth table is \textit{exponential} in the number of propositional symbols (we checked all assignments)