Knowledge Representation.
Propositional logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Knowledge-based agent

<table>
<thead>
<tr>
<th>Knowledge base</th>
<th>Inference engine</th>
</tr>
</thead>
</table>

- **Knowledge base (KB):**
 - Knowledge that describe facts about the world in some formal (representational) language
 - **Domain specific**
- **Inference engine:**
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. **Inferences typically require search.**
 - **Domain independent**
Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- **Knowledge base** represents
 - **Facts** about a specific patient case
 - **Rules** describing relations between entities in the bacterial infection domain

| If | 1. The stain of the organism is gram-positive, and
| | 2. The morphology of the organism is coccus, and
| | 3. The growth conformation of the organism is chains |
| | Then the identity of the organism is streptococcus |

- **Inference engine:**
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge representation

- **Objective:** express the knowledge about the world in a computer-tractable form
- **Knowledge representation languages (KRLs)**

 Key aspects:
 - **Syntax:** describes how sentences in KRL are formed in the language
 - **Semantics:** describes the meaning of sentences, what is it the sentence refers to in the real world
 - **Computational aspect:** describes how sentences and objects in KRL are manipulated in concordance with semantic conventions

Many KB systems rely on and implement some variant of logic
Logic

A formal language for expressing knowledge and for making logical inferences

Defined by:

- **A set of sentences:** A *sentence* is constructed from a set of *primitives* according to *syntactic rules*
- **A set of interpretations:** An interpretation I gives a *semantic to primitives*. It associates primitives with objects or values
 - I: primitives \rightarrow objects/values
- **The valuation (meaning) function V:**
 - Assigns a value (typically the truth value) to a given *sentence* under some interpretation
 $V : \text{sentence} \times \text{interpretation} \rightarrow \{True, False\}$

Propositional logic

- **The simplest logic**

- **Definition:**
 - A *proposition* is a statement that is either true or false.

- **Examples:**
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
Propositional logic

• The simplest logic

• **Definition:**
 – A proposition is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – $5 + 2 = 8$.
 • ?
Propositional logic

• The simplest logic

• **Definition:**
 – A *proposition* is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – $5 + 2 = 8$.
 • (F)
 – It is raining today.
 • (either T or F)

Propositional logic

• Examples (cont.):
 – How are you?
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – $x + 5 = 3$
 • ?

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – $x + 5 = 3$
 • since x is not specified, neither true nor false
 – 2 is a prime number.
 • ?
Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – $x + 5 = 3$
 • since x is not specified, neither true nor false
 – 2 is a prime number.
 • (T)

Propositional logic. Syntax

• Formally propositional logic P:
 – Is defined by Syntax+interpretation+semantics of P

Syntax:
• Symbols (alphabet) in P:
 – Constants: True, False
 – Propositional symbols
 Examples:
 • P
 • Pitt is located in the Oakland section of Pittsburgh.,
 • It rains outside, etc.
 – A set of connectives:
 $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
Propositional logic. Syntax

Sentences in the propositional logic:

- **Atomic sentences:**
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or *Light in the room is on, It rains outside* are (atomic) sentences

- **Composite sentences:**
 - Constructed from valid sentences via logical connectives
 - If A, B are sentences then
 - $\neg A$ ($A \land B$) $A \lor B$ $A \Rightarrow B$ $A \Leftrightarrow B$
 - or $A \lor B \land$ ($A \lor \neg B$)
 - are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

The semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of logical connectives**
 - Meaning (semantics) of composite sentences
Semantic: propositional symbols

A propositional symbol
• a statement about the world that is either true or false
Examples:
– Pitt is located in the Oakland section of Pittsburgh
– It rains outside
– Light in the room is on
• An interpretation maps symbols to one of the two values: True (T), or False (F), depending on whether the symbol is satisfied in the world

I: Light in the room is on -> True, It rains outside -> False
I’: Light in the room is on -> False, It rains outside -> False

Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False
V(Light in the room is on, I) = True
V(It rains outside, I) = False

I’: Light in the room is on -> False, It rains outside -> False
V(Light in the room is on, I’) = False

<table>
<thead>
<tr>
<th>Interpretations</th>
<th>Meanings (values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light in the room is on</td>
<td>It rains outside</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

M. Hauskrecht
Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True, False value

\[
V(\text{True}, I) = \text{True} \\
V(\text{False}, I) = \text{False}
\]

For any interpretation \(I \)

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \Rightarrow Q)</th>
<th>(P \Leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Translation

Translation of English sentences to propositional logic:
(1) identify atomic sentences that are propositions
(2) Use logical connectives to translate more complex composite sentences that consist of many atomic sentences

Assume the following sentence:
• It is not sunny this afternoon and it is colder than yesterday.

Atomic sentences:
• p = It is sunny this afternoon
• q = it is colder than yesterday

Translation: \(\neg p \land q \)

Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday.
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:
• p = It is sunny this afternoon
• q = it is colder than yesterday
• r = We will go swimming
• s= we will take a canoe trip
• t= We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = It is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = We will take a canoe trip
• \(t \) = We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset
Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

- **Contradiction** (always *False*)
 \[P \land \neg P \]

- **Tautology** (always *True*)
 \[P \lor \neg P \]

\[\neg(P \lor Q) \iff (\neg P \land \neg Q) \]
\[\neg(P \land Q) \iff (\neg P \lor \neg Q) \]
\] DeMorgan’s Laws

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- **Example 1:**
 - Primitives: \(P, Q \)
 - Sentence: \(P \lor Q \)
 - Interpretations:
 - Model?
 - \(P \to True, Q \to True \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

M. Hauskrecht
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- Example 1:
- Primitives: P,Q
- Sentence: \(P \lor Q \)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- Example 1:
- Primitives: P,Q
- Sentence: \(P \lor Q \)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• Example 1:
 – Primitives: P, Q
 – Sentence: \(P \lor Q \)
 – Interpretations:
 • \(P \rightarrow True, Q \rightarrow True \)
 Model: Yes
 • \(P \rightarrow True, Q \rightarrow False \)
 Model: Yes
 • \(P \rightarrow False, Q \rightarrow False \)
 Model: No

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q) (\Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• Example 2:
 – Primitives: P, Q
 – Sentences:
 \(P \lor Q \)
 \((P \lor Q) \land \neg Q \)
 \(((P \lor Q) \land \neg Q) \Rightarrow P \)
 – Is there a model?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• Example 2:
 – Primitives: P, Q
 – Sentences: $P \lor Q$

 $(P \lor Q) \land \neg Q$

 $((P \lor Q) \land \neg Q) \Rightarrow P$

 – Is there a model? Yes $P \rightarrow True$ $Q \rightarrow False$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$(P \lor Q) \land \neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

M. Hauskrecht

Model, validity and satisfiability

• An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• A sentence is satisfiable if it has a model;
 – There is at least one interpretation under which the sentence can evaluate to True

• Example:
 – Sentence: $(P \lor Q) \land \neg Q$
 – Satisfiable?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$(P \lor Q) \land \neg Q$</th>
<th>$((P \lor Q) \land \neg Q) \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

M. Hauskrecht
Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- **Example:**
 - Sentence: \((P \lor Q) \land \neg Q\)
 - Satisfiable? Yes True for \(P \rightarrow True, Q \rightarrow False\)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is **True in all interpretations**
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>((P \lor Q) \land \neg Q \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>(P ∨ Q) ∧ ¬Q</th>
<th>((P ∨ Q) ∧ ¬Q) ⇒ P</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

valid sentence?

Entailment

- Entailment reflects the relation of one fact in the world following from the others

- Entailment $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds (interpretations) where KB is true
Sound and complete inference

Inference is a process by which new sentences are derived from existing sentences in the KB

- the inference process is implemented on a computer

Assume an **inference procedure** \(i\) that

- derives a sentence \(\alpha\) from the KB: \(KB \vdash_i \alpha\)

Properties of the inference procedure in terms of entailment

- **Soundness:** An inference procedure is **sound**

 \[
 \text{If } KB \vdash_i \alpha \text{ then it is true that } KB \models \alpha
 \]

- **Completeness:** An inference procedure is **complete**

 \[
 \text{If } KB \models \alpha \text{ then it is true that } KB \vdash_i \alpha
 \]

Logical inference problem

Logical inference problem:

Given:

- a knowledge base KB (a set of sentences) and
- a sentence \(\alpha\) (called a theorem),

- **Does a KB semantically entail** \(\alpha\)? \(KB \models \alpha\)?

In other words: In all interpretations in which sentences in the KB are true, is also \(\alpha\) true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable.**