Informed search methods

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Announcements

Homework assignment 2:
• Due on Wednesday, September 18, 2019 before the class
• Two parts:
 – Report
 – Programming part (Puzzle 8)

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs2710/
Search methods

- **Uninformed search methods**
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Iterative deepening (IDA)
 - Bi-directional search
 - Uniform cost search

- **Informed (or heuristic) search methods:**
 - Best first search with a heuristic function

Evaluation-function driven search

- A search strategy can be defined in terms of a node evaluation function
 - Similarly to the path cost for the uniform cost search

- **Evaluation function**
 - Denoted $f(n)$
 - Defines the desirability of a node to be expanded next

- **Evaluation-function driven search:**
 - expand the node with the best evaluation-function value

- **Implementation:**
 - priority queue with nodes in the decreasing order of their evaluation function value
Uniform cost search

• **Uniform cost search (Dijkstra’s shortest path):**
 – A special case of the evaluation-function driven search
 \[f(n) = g(n) \]

• **Path cost function** \(g(n) \):
 – path cost from the initial state to \(n \)

• **Uniform-cost search:**
 – Can handle general minimum cost path-search problem:
 – **weights or costs** associated with operators (links).

• **Note:** Uniform cost search relies on the problem definition only
 – It is an uninformed search method

Additional information to guide the search

• **Uninformed search methods**
 – use only the information from the problem definition; and
 – past explorations, e.g. cost of the path generated so far

• **Informed search methods**
 – incorporate additional measure of a potential of a specific state to reach the goal
 – a potential of a state (node) to reach a goal is measured by a **heuristic function**

• Heuristics function is denoted \(h(n) \)
Best-first search

Best-first search = evaluation-function driven search
- Typically incorporates a heuristic function, $h(n)$, into the evaluation function $f(n)$ to guide the search.

Heuristic function $h(n)$:
- Measures a potential of a state (node) to reach a goal
- Typically expressed in terms of some distance to a goal estimate

Example of a heuristic function:
- Assume a shortest path problem with city distances on connections
- Straight-line distances between cities give additional information we can use to guide the search

Example: traveler problem with straight-line distance information
- Straight-line distances give an estimate of the cost of the path between the two cities
Best-first search

Best-first search = evaluation-function driven search

• Typically incorporates a **heuristic function**, \(h(n) \), into the evaluation function \(f(n) \) to guide the search.

• **heuristic function**: measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):

– **Greedy search**
 \[f(n) = h(n) \]

– **A* algorithm**
 \[f(n) = g(n) + h(n) \]

+ **iterative deepening** version of A* : **IDA**

Greedy search method

• Evaluation function is equal to the heuristic function
 \[f(n) = h(n) \]

• **Idea**: the node that seems to be the closest to the goal is expanded first
Greedy search

\[f(n) = h(n) \]

queue \[\rightarrow \]

Arad \hspace{1cm} 366

\[f(n) = h(n) \]

queue \[\rightarrow \]

Sibiu \hspace{1cm} 253
Timisoara \hspace{1cm} 329
Zerind \hspace{1cm} 374
Greedy search

\[f(n) = h(n) \]

Queue

- **Greedy search**

- **f(n) = h(n)**

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Rimnicu V.</td>
<td>193</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
</tbody>
</table>

Goal !!!
Properties of greedy search

- Completeness: No. We can loop forever. Nodes that seem to be the best choices can lead to cycles. Yes. Elimination of state repeats can solve the problem.

- Optimality: ?

- Time complexity: ?

- Memory (space) complexity: ?
Example: traveler problem with straight-line distance information

- Greedy search result

Example: traveler problem with straight-line distance information

- Greedy search and optimality
Properties of greedy search

- **Completeness:**
 - No. We can loop forever. Nodes that seem to be the best choices can lead to cycles.
 - Yes. Elimination of state repeats can solve the problem.

- **Optimality:** No.
 - Even if we reach the goal, we may be biased by a bad heuristic estimate. **Evaluation function disregards the cost of the path built so far.**

- **Time complexity:** $O(b^m)$
 - Worst case !!! But often better!

- **Memory (space) complexity:** $O(b^m)$
 - Often better!

A* search

- The problem with the **greedy search** is that it can keep expanding paths that are already very expensive.
- The problem with the **uniform-cost search** is that it uses only past exploration information (path cost), no additional information is utilized

- **A* search**
 - $f(n) = g(n) + h(n)$
 - $g(n)$ - cost of reaching the state
 - $h(n)$ - estimate of the cost from the current state to a goal
 - $f(n)$ - estimate of the path length

- **Additional A*condition:** admissible heuristic
 - $h(n) \leq h^*(n)$ for all n
A* search example

\(f(n) \)

- **Arad**: 366
- **queue**: \(\rightarrow \) **Arad**: 366

A* search example

\(f(n) \)

- **Arad**: 366
- **queue**: \(\rightarrow \) **Sibiu**: 393, **Timisoara**: 447, **Zerind**: 449

A* search example

A* search example

M. Hauskrecht
A* search example

M. Hauskrecht

A* search example

M. Hauskrecht
A* search example

Properties of A* search

- **Completeness:** ?
- **Optimality:** ?
- **Time complexity:**
 - ?
- **Memory (space) complexity:**
 - ?
Properties of A* search

- **Completeness:** can we get stuck in the infinite loop?
 - No!
 - Then the algorithm is complete even without repeat checks.
- **Optimality:** ?
- **Time complexity:**
 - ?
- **Memory (space) complexity:**
 - ?
Properties of A* search

- Completeness: Yes.
- Optimality: ?
- Time complexity: – ?
- Memory (space) complexity: – ?

Optimality of A*

- In general, a heuristic function \(h(n) \):
 It can overestimate, be equal or underestimate the true distance of a node to the goal \(h^*(n) \)
- Is the A* optimal for an arbitrary heuristic function?
Example: traveler problem with straight-line distance information

- Admissible heuristics

\[f(n) = 220 + 400 = 620 \]
\[f(n) = 239 + 178 = 417 \]
Example: traveler problem with straight-line distance information

- Admissible heuristics

Optimality of A*

- In general, a heuristic function $h(n)$:
 - Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$
- Is the A* optimal for an arbitrary heuristic function?
 - No!
Optimality of A*

- In general, a heuristic function $h(n)$:
 Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$

- **Admissible heuristic condition**
 - Never overestimate the distance to the goal !!!

 $$h(n) \leq h^*(n) \quad \text{for all } n$$

Example: the straight-line distance in the travel problem never overestimates the actual distance

Is A* search with an admissible heuristic optimal ??

Optimality of A* (proof)

- Let G_1 be the optimal goal (with the minimum path distance). Assume that we have a sub-optimal goal G_2. Let n be a node that is on the optimal path and is in the queue together with G_2

Then: $$f(G2) = g(G2) \quad \text{since } h(G2) = 0$$
$$> g(G1) \quad \text{since } G_2 \text{ is suboptimal}$$
$$\geq f(n) \quad \text{since } h \text{ is admissible}$$

And thus A* never selects G_2 before n
Properties of A* search

- Completeness: Yes.

- Optimality: Yes (with the admissible heuristic)

- Time complexity:
 - Order roughly the number of nodes with $f(n)$ smaller than the cost of the optimal path g^*

- Memory (space) complexity:
 - Same as time complexity (all nodes in the memory)
Admissible heuristics

Heuristics can be designed using a relaxed version of the problem

- **Example:** the 8-puzzle problem

 ![Initial position and Goal position](image)

 - **Admissible heuristics:**
 1. number of misplaced tiles
 2. Sum of distances of all tiles from their goal positions (Manhattan distance)

 $h(n)$ for the initial position: ?
Admissible heuristics

Heuristics 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

$h(n)$ for the initial position: 7

Admissible heuristics

- **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

$h(n)$ for the initial position:
Admissible heuristics

- **Heuristic 2**: Sum of distances of all tiles from their goal positions (Manhattan distance)

 ![Initial position and Goal position](image)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

 $h(n)$ for the initial position:

 $2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14$

 For tiles: 1 2 3 4 5 6 7 8

Admissible heuristics

- We can have multiple admissible heuristics for the same problem
- **Dominance**: Heuristic function h_1 dominates h_2 if

 $$\forall n \ h_1(n) \geq h_2(n)$$

- **Combination**: two or more admissible heuristics can be combined to give a new admissible heuristics
 - Assume two admissible heuristics h_1, h_2

 Then: $h_3(n) = \max(h_1(n), h_2(n))$

 is admissible
Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search,
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit \(l=0 \), then \(l=1 \), \(l=2 \), and so on until the solution is reached.

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead.

Properties of IDA

- **Completeness**: Yes. The solution is reached if it exists. (the same as BFS)
- **Optimality**: Yes, for the shortest path. (the same as BFS)
- **Time complexity**:
 \[
 O(1) + O(b) + O(b^2) + \ldots + O(b^d) = O(b^d)
 \]

 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity**:

 \[
 O(db)
 \]

 much better than BFS
IDA*

Iterative deepening version of A*

- Progressively increases the **evaluation function limit** (instead of the depth limit)

- Performs **limited-cost depth-first search** for the current evaluation function limit
 - Keeps expanding nodes in the depth first manner up to the evaluation function limit

- **Problem:** it is unclear what the amount by which the evaluation limit should be progressively increased

Problem: the amount by which the evaluation limit should be progressively increased

Solutions:

(1) **peak over the previous step boundary** to guarantee that in the next cycle some number of nodes is expanded

(2) **Increase the limit by a fixed cost increment** – say ε

\[
\text{Cost limit} = k \varepsilon
\]
Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?

We may find a sub-optimal solution

Fix: ?
Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 We may find a sub-optimal solution
 - **Fix:** complete the search up to the limit to find the best

Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:
- What is bad?

\[\text{Cost limit} = k \varepsilon \]
IDA*

Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:
- What is bad? Too many or too few nodes expanded – no control of the number of nodes
- What is the quality of the solution?
 - The solution found first may differ by $< \varepsilon$ from the optimal solution