Propositional logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Knowledge representation
Knowledge-based agent

- **Knowledge base (KB):**
 - A set of sentences that describe facts about the world in some formal (representational) language
 - Domain specific
- **Inference engine:**
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- **Knowledge base** represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

```
If
  1. The stain of the organism is gram-positive, and
  2. The morphology of the organism is coccus, and
  3. The growth conformation of the organism is chains
Then
  the identity of the organism is streptococcus
```

- **Inference engine:**
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)
Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form.

- Key aspects of knowledge representation languages:
 - **Syntax:** describes how sentences are formed in the language.
 - **Semantics:** describes the meaning of sentences, what is it the sentence refers to in the real world.
 - **Computational aspect:** describes how sentences and objects are manipulated in concordance with semantical conventions.

 Many KB systems rely on some variant of logic.

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- **A set of sentences**
 - A sentence is constructed from a set of primitives according to syntax rules.

- **A set of interpretations**
 - An interpretation gives a semantic to primitives. It associates primitives with values.

- **The valuation (meaning) function** \(V \)
 - Assigns a value (typically the truth value) to a given sentence under some interpretation.

\[
V: \text{sentence} \times \text{interpretation} \rightarrow \{True, False\}
\]
Example of logic

Language of numerical constraints:
• A sentence:
 \[x + 3 \leq z \]
 \(x, z \) - variable symbols (primitives in the language)

• An interpretation:
 I: \(x = 5, z = 2 \)
 Variables mapped to specific real numbers

• Valuation (meaning) function \(V \):
 \[V(x + 3 \leq z, I) \text{ is } \text{False} \text{ for } I: x = 5, z = 2 \]
 \[\text{is } \text{True} \text{ for } I: x = 5, z = 10 \]

Types of logic

• Different types of logics possible:
 – Propositional logic
 – First-order logic
 – Temporal logic
 – Numerical constraints logic
 – Map-coloring logic

In the following:
• Propositional logic.
 – Formal language for making logical inferences
 – Foundations of propositional logic: George Boole (1854)
Propositional logic. Syntax

- **Propositional logic P:**
 - defines a language for symbolic reasoning

- **Proposition:** a statement that is either true or false
- Examples of propositions:
 - *Pitt is located in the Oakland section of Pittsburgh.*
 - *France is in Europe.*
 - *It rains outside.*
 - *2 is a prime number and 6 is a prime number.*
 - *How are you?* Not a proposition.

Propositional logic. Syntax

- **Formally propositional logic P:**
 - Is defined by **Syntax + interpretation + semantics of P**

 Syntax:
 - **Symbols (alphabet) in P:**
 - **Constants:** *True, False*
 - **Propositional symbols**
 - Examples:
 - *P*
 - *Pitt is located in the Oakland section of Pittsburgh.*
 - *It rains outside,* etc.
 - **A set of connectives:**
 - ¬, ∧, ∨, →, ↔
Propositional logic. Syntax

Sentences in the propositional logic:

• **Atomic sentences:**
 – Constructed from constants and propositional symbols
 – True, False are (atomic) sentences
 – $P \cdot Q$ or Light in the room is on, It rains outside are (atomic) sentences

• **Composite sentences:**
 – Constructed from valid sentences via connectives
 – If A, B are sentences then
 \[\neg A \quad (A \land B) \quad (A \lor B) \quad (A \Rightarrow B) \quad (A \Leftrightarrow B) \]
 or \[(A \lor B) \land (A \lor \neg B) \]
 are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 – Semantics of atomic sentences

2. **Through the meaning of connectives**
 – Meaning (semantics) of composite sentences
Semantic: propositional symbols

A propositional symbol
• a statement about the world that is either true or false

Examples:
– Pitt is located in the Oakland section of Pittsburgh
– It rains outside
– Light in the room is on

• An interpretation maps symbols to one of the two values: True (T), or False (F), depending on whether the symbol is satisfied in the world

I: Light in the room is on -> True, It rains outside -> False

I’: Light in the room is on -> False, It rains outside -> False

Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False

\[V(\text{Light in the room is on}, I) = \text{True} \]
\[V(\text{It rains outside}, I) = \text{False} \]

I’: Light in the room is on -> False, It rains outside -> False

\[V(\text{Light in the room is on}, I’) = \text{False} \]
Semantics: constants

- **The meaning (truth) of constants:**
 - True and False constants are always (under any interpretation) assigned the corresponding *True, False* value

 \[
 V(\text{True}, I) = \text{True} \\
 V(\text{False}, I) = \text{False}
 \]

 For any interpretation \(I \)

Semantics: composite sentences.

- **The meaning (truth value) of complex propositional sentences.**
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \Rightarrow Q)</th>
<th>(P \Leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday.
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday
• \(r = \) We will go swimming
• \(s = \) we will take a canoe trip
• \(t = \) We will be home by sunset
Translation

Assume the following sentences:
• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset.

Denote:
• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:

• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday
• \(r = \) We will go swimming
• \(s = \) we will take a canoe trip
• \(t = \) We will be home by sunset

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

• \textbf{Contradiction} (always \textit{False})
 \[P \land \neg P \]

• \textbf{Tautology} (always \textit{True})
 \[P \lor \neg P \]

\[
\begin{align*}
\neg (P \lor Q) & \iff (\neg P \land \neg Q) \\
\neg (P \land Q) & \iff (\neg P \lor \neg Q)
\end{align*}
\]
DeMorgan’s Laws
Model, validity and satisfiability

• A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• A sentence is satisfiable if it has a model;
 – There is at least one interpretation under which the sentence can evaluate to True.

• A sentence is valid if it is True in all interpretations
 – i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Model, validity and satisfiability

• A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

• A sentence is satisfiable if it has a model;
 – There is at least one interpretation under which the sentence can evaluate to True.

• A sentence is valid if it is True in all interpretations
 – i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- A **model (in logic)**: An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

<table>
<thead>
<tr>
<th>Satisfiable sentence</th>
<th>Valid sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \lor Q)</td>
<td>((P \lor Q) \land \neg \neg Q)</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Entailment

- **Entailment** reflects the relation of one fact in the world following from the others

```
Sentences --------> Entails --------> Sentence
                  
Facts --------> Follows --------> Fact
```

- Entailment $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

Sound and complete inference.

Inference is a process by which conclusions are reached.
- We want to implement the inference process on a computer!!

Assume an **inference procedure** i that
- derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

- **Soundness**: An inference procedure is sound

 If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

- **Completeness**: An inference procedure is complete

 If $KB \models \alpha$ then it is true that $KB \vdash_i \alpha$
Logical inference problem

Logical inference problem:
- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α? $KB \models \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is decidable.
Solving logical inference problem

In the following:

How to design the procedure that answers:

\[KB \models \alpha \]

Three approaches:
- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

Truth-table approach

Problem: \[KB \models \alpha \]
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

\[\alpha \]
Truth-table approach

Problem: \(KB \models \alpha \) ?
- We need to check all possible interpretations for which the KB is true (models of KB) whether \(\alpha \) is true for each of them

Truth table:
- enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

<table>
<thead>
<tr>
<th></th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(P \iff Q)</th>
<th>((P \lor \neg Q) \land Q)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Truth-table approach

A two steps procedure:
1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example:

$$KB = (A \lor C) \land (B \lor \neg C) \quad \alpha = (A \lor B)$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$(B \lor \neg C)$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

• The truth-table approach is sound and complete for the propositional logic!!
Limitations of the truth table approach.

\[KB \models \alpha \ ? \]

What is the computational complexity of the truth table approach?

- \(\alpha = |KB| \)

Exponential in the number of the proposition symbols

\[2^n \] Rows in the table has to be filled
Limitations of the truth table approach.

$$KB \models \alpha$$

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

$$2^n$$ Rows in the table has to be filled

But typically only for a small subset of rows the KB is true

Limitations of the truth table approach.

$$KB \models \alpha$$

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset
Limitation of the truth table approach.

\[KB \models \alpha ? \]

Problem with the truth table approach:
- the truth table is exponential in the number of propositional symbols (we checked all assignments)
- KB is true only on a small subset interpretations

How to make the process more efficient?

Inference rules approach.

\[KB \models \alpha ? \]

Problem with the truth table approach:
- the truth table is exponential in the number of propositional symbols (we checked all assignments)
- KB is true only on a smaller subset

How to make the process more efficient?

Solution: check only entries for which KB is *True.*
This is the idea behind the inference rules approach

Inference rules:
- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones
Inference rules for logic

• Modus ponens

\[
\frac{A \Rightarrow B, \quad A}{B}
\]

– If both sentences in the premise are true then conclusion is true.
– The modus ponens inference rule is **sound**.
 – We can prove this through the truth table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ⇒ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Inference rules for logic

• And-elimination

\[
\frac{A_1 \land A_2 \land \ldots \land A_n}{A_i}
\]

• And-introduction

\[
\frac{A_1, A_2, \ldots, A_n}{A_1 \land A_2 \land \ldots \land A_n}
\]

• Or-introduction

\[
\frac{A_i}{A_1 \lor A_2 \lor \ldots \lor A_i \lor A_n}
\]
Inference rules for logic

<table>
<thead>
<tr>
<th>Inference Rule</th>
<th>Logical Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination of double negation</td>
<td>(\neg \neg A \vdash A)</td>
</tr>
<tr>
<td>Unit resolution</td>
<td>(A \lor B, \neg A \vdash B)</td>
</tr>
<tr>
<td>Resolution</td>
<td>(A \lor B, \neg B \lor C \vdash A \lor C)</td>
</tr>
</tbody>
</table>

- All of the above inference rules are sound. We can prove this through the truth table, similarly to the modus ponens case.

Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \)

Theorem: \(S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \) \hspace{1cm} \text{From 1 and And-elim}
 \[
 \frac{A_1 \land A_2 \land \ldots \land A_n}{A_i}
 \]
5. \(R \) \hspace{1cm} \text{From 2, 4 and Modus ponens}
 \[
 \frac{A \Rightarrow B, \quad A}{B}
 \]
Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \)
5. \(R \)
6. \(Q \)

\[
\begin{array}{c}
A_1 \land A_2 \land \ldots \land A_n \\
A_i
\end{array}
\]

From 1 and And-elim

CS 2710 Foundations of AI

Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \quad \text{Theorem: } S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \)
5. \(R \)
6. \(Q \)
7. \((Q \land R) \)

\[
\begin{array}{c}
A_1, A_2, \ldots, A_n \\
A_1 \land A_2 \land \ldots \land A_n
\end{array}
\]

From 5,6 and And-introduction
Example. Inference rules approach.

KB: \(P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S \) \hspace{1cm} Theorem: \(S \)

1. \(P \land Q \)
2. \(P \Rightarrow R \)
3. \((Q \land R) \Rightarrow S \)
4. \(P \)
5. \(R \)
6. \(Q \)
7. \((Q \land R) \)
8. \(S \)

From 7,3 and Modus ponens

Proved: \(S \)
Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

\[
\begin{align*}
P \Rightarrow Q \\
R \Rightarrow S \\
P \\
R \\
\ldots
\end{align*}
\]

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible rules to be can be applied next

Looks familiar?

\[
\begin{align*}
P \Rightarrow Q, & P \\
Q \\
R \Rightarrow S, & R \\
S \\
\ldots
\end{align*}
\]

This is an instance of a search problem:

Truth table method (from the search perspective):

- blind enumeration and checking
Logic inferences and search

Inference rule method as a search problem:

- **State**: a set of sentences that are known to be true
- **Initial state**: a set of sentences in the KB
- **Operators**: applications of inference rules
 - Allow us to add new sound sentences to old ones
- **Goal state**: a theorem \(\alpha \) is derived from KB

Logic inference:

- **Proof**: A sequence of sentences that are immediate consequences of applied inference rules
- **Theorem proving**: process of finding a proof of theorem

Normal forms

Sentences in the propositional logic can be transformed into one of the normal forms. This can simplify the inferences.

Normal forms used:

Conjunctive normal form (CNF)
- conjunction of clauses (clauses include disjunctions of literals)

\[
(A \lor B) \land (\neg A \lor \neg C \lor D)
\]

Disjunctive normal form (DNF)
- Disjunction of terms (terms include conjunction of literals)

\[
(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)
\]
Conversion to a CNF

Assume: \(\neg(A \Rightarrow B) \lor (C \Rightarrow A) \)

1. Eliminate \(\Rightarrow, \iff \)

\[\neg(\neg A \lor B) \lor (\neg C \lor A) \]

2. Reduce the scope of signs through DeMorgan Laws and double negation

\[(A \land \neg B) \lor (\neg C \lor A) \]

3. Convert to CNF using the associative and distributive laws

\[(A \lor \neg C \lor A) \land (\neg B \lor \neg C \lor A) \]

and

\[(A \lor \neg C) \land (\neg B \lor \neg C \lor A) \]

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

\[(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \ldots \]

It is an instance of a constraint satisfaction problem:

- **Variables:**
 - Propositional symbols \(P, R, T, S \)
 - Values: \textit{True, False}

- **Constraints:**
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true

- **All techniques developed for CSPs can be applied to solve the logical inference problem. Why?**
Inference problem and satisfiability

Inference problem:
- we want to show that the sentence \(\alpha \) is entailed by KB

Satisfiability:
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:
\[
KB \models \alpha \quad \text{if and only if} \quad (KB \land \neg \alpha) \text{ is unsatisfiable}
\]

Consequences:
- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule

Resolution rule
- sound inference rule that works for CNF
- It is complete for propositional logic (refutation complete)

\[
\frac{A \lor B, \quad \neg A \lor C}{B \lor C}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A \lor B</th>
<th>\neg B \lor C</th>
<th>A \lor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

CS 2710 Foundations of AI
Universal rule: Resolution.

Initial obstacle:
- Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:
- We know: \(A \land B \) We want to show: \(A \lor B \)
- Resolution rule fails to derive it (incomplete ??)

A trick to make things work:
- proof by contradiction
 - Disproving: \(KB \land \neg \alpha \)
 - Proves the entailment \(KB \models \alpha \)

Resolution algorithm

Algorithm:
- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from \(KB \land \neg \alpha \) (in CNF form)
- Stop when:
 - Contradiction (empty clause) is reached:
 - \(A \land \neg A \rightarrow \bot \)
 - proves entailment.
 - No more new sentences can be derived
 - disproves it.
Example. Resolution.

KB: \((P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]\) \hspace{1cm} \text{Theorem:} \; S

Step 1. convert KB to CNF:
- \(P \land Q \quad \rightarrow \quad P \land Q\)
- \(P \Rightarrow R \quad \rightarrow \quad (\neg P \lor R)\)
- \((Q \land R) \Rightarrow S \quad \rightarrow \quad (\neg Q \lor \neg R \lor S)\)

KB: \(P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S)\)

Step 2. Negate the theorem to prove it via refutation

\(S \quad \rightarrow \quad \neg S\)

Step 3. Run resolution on the set of clauses

\(P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S\)
Example. Resolution.

KB: \((P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]\)
Theorem: \(S\)

\[
P Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S
\]

\[
R
\]

\[
R \quad (\neg R \lor S)
\]
Example. Resolution.

KB: \((P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]\)

Theorem: \(S\)

\[
\begin{align*}
P & \quad (\neg P \lor R) \\
Q & \quad (\neg Q \lor \neg R \lor S) \\
R & \quad (\neg R \lor S) \\
\end{align*}
\]

Contradiction \(\{\}\)

Proved: \(S\)