Constraint-satisfaction search

Search problem

A search problem:

- **Search space (or state space):** a set of objects among which we conduct the search;
- **Initial state:** an object we start to search from;
- **Operators (actions):** transform one state in the search space to the other;
- **Goal condition:** describes the object we search for

- **Possible metric on a search space:**
 - measures the quality of the object with regard to the goal

Search problems occur in planning, optimizations, learning
Constraint satisfaction problem (CSP)

Constraint satisfaction problem (CSP) is a configuration search problem where:

- A state is defined by a set of variables
- Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP allow more specific procedures to be designed and applied for solving them.

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
- Represent queens, one for each column:
 - \(Q_1, Q_2, Q_3, Q_4 \)
- Values:
 - Row placement of each queen on the board \{1, 2, 3, 4\}

Constraints:
- \(Q_i \neq Q_j \) Two queens not in the same row
- \(|Q_i - Q_j| \neq |i - j| \) Two queens not on the same diagonal
Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)
- Used in the propositional logic (covered later)

\[(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)\ldots\]

Variables:
- Propositional symbols (P, R, T, S)
- Values: True, False

Constraints:
- Every conjunct must evaluate to true, at least one of the literals must evaluate to true

\[(P \lor Q \lor \neg R) \equiv True , (\neg P \lor \neg R \lor S) \equiv True ,\ldots\]

Other real world CSP problems

Scheduling problems:
- E.g. telescope scheduling
- High-school class schedule

Design problems:
- Hardware configurations
- VLSI design

More complex problems may involve:
- real-valued variables
- additional preferences on variable assignments – the optimal configuration is sought
Map coloring

Color a map using \(k \) different colors such that no adjacent countries have the same color.

Variables:
- Represent countries
 - \(A, B, C, D, E \)
- Values:
 - \(k \)-different colors
 \{Red, Blue, Green,..\}

Constraints:

Map coloring

Color a map using \(k \) different colors such that no adjacent countries have the same color.

Variables:
- Represent countries
 - \(A, B, C, D, E \)
- Values:
 - \(k \)-different colors
 \{Red, Blue, Green,..\}

Constraints:

Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:
- Represent countries
 - \(A, B, C, D, E\)
- Values:
 - \(k\) different colors
 \{Red, Blue, Green,..\}

Constraints: \(A \neq B, A \neq C, C \neq E\), etc
An example of a problem with **binary constraints**

Constraint satisfaction as a search problem

Formulation of a CSP as a search problem:
- **States.** Assignment (partial, complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- **Goal condition.** All variables are assigned, no constraints are violated.

- **Constraints** can be represented:
 - **Explicitly** by a set of allowable values
 - **Implicitly** by a function that tests for the satisfaction of constraints
Solving CSP as a standard search

Unassigned: \(Q_1, Q_2, Q_3, Q_4 \)
Assigned:

Unassigned: \(Q_2, Q_4, Q_1 \)
Assigned: \(Q_1 = 1 \)

Unassigned: \(Q_2, Q_4, Q_3 \)
Assigned: \(Q_1 = 2 \)

Unassigned: \(Q_3, Q_4 \)
Assigned: \(Q_1 = 2, Q_2 = 4 \)

Solving a CSP through standard search

- Maximum depth of the tree (m): ?
- Depth of the solution (d): ?
- Branching factor (b): ?
Solving a CSP through standard search

- **Maximum depth of the tree:** Number of variables of the CSP
- **Depth of the solution:** Number of variables of the CSP
- **Branching factor:** if we fix the order of variable assignments the branch factor depends on the number of their values

- What search algorithm to use? ?
 Depth of the tree = Depth of the solution=number of vars
Solving a CSP through standard search

- **What search algorithm to use:** Depth first search
 - Since we know the depth of the solution
 - **DFS in context of CSP is also referred to as backtracking**

Checking constraint consistency

The violation of constraints needs to be checked for each node, either during its generation or before its expansion

Consistency of constraints:
- Current *variable assignments* together with *constraints* restrict remaining legal values of unassigned variables;
- The remaining *legal and illegal values of variables may be inferred* (effect of constraints propagates)
- To prevent “blind” exploration it is necessary to keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search
Constraint propagation

A state (more broadly) is defined by a set of variables and their legal and illegal assignments. Legal and illegal assignments can be represented through variable equations and variable disequations. Example: map coloring

- Equation: $A = \text{Red}$
- Disequation: $C \neq \text{Red}$

Constraints + assignments can entail new equations and disequations:

$A = \text{Red} \rightarrow B \neq \text{Red}$

Constraint propagation

- Assign $A=\text{Red}$

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - equations ✗ - disequations
Constraint propagation

- Assign $A=$Red

Table:

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - equations × - disequations

Constraint propagation

- Assign $E=$Blue

Table:

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constraint propagation

• Assign E=Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

Constraint propagation

• Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green
C=Green

Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green
C=Green
F=Red

Constraint propagation

Three known techniques for propagating the effects of past assignments and constraints:

- **Value propagation**
- **Arc consistency**
- **Forward checking**

Difference:
- Completeness of inferences
- Time complexity of inferences.

1. **Value propagation.** Infers:
 - equations from the set of equations defining the partial assignment, and a constraint

2. **Arc consistency.** Infers:
 - disequations from the set of equations and disequations defining the partial assignment, and a constraint
 - equations through the exhaustion of alternatives

3. **Forward checking.** Infers:
 - disequations from a set of equations defining the partial assignment, and a constraint
 - Equations through the exhaustion of alternatives

Restricted forward checking:
- uses only active constraints (active constraint – only one variable unassigned in the constraint)
Heuristics for CSPs

Backtracking searches the space in the depth-first manner. But we can choose:

- Which variable to assign next?
- Which value to choose first?

Heuristics

- **Most constrained variable**
 - Which variable is likely to become a bottleneck?
- **Least constraining value**
 - Which value gives us more flexibility later?

Heuristics for CSP

Examples: **map coloring**

Heuristics

- **Most constrained variable**
 - Country E is the most constrained one (cannot use Red, Green)

- **Least constraining value**
 - Assume we have chosen variable C
 - Red is the least constraining valid color for the future
Search for optimal configurations

Search for the optimal configuration

Configuration-search problems:
• Are often enhanced with some quality measure

Quality measure
• reflects our preference towards each configuration (or state)

Goal
• find the configuration with the optimal quality
Example: Traveling salesman problem

Problem:
• A graph with distances

![Graph with cities and edges]

• Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid tour: ABCDEF

Example: N queens

• Some CSP problems do not have a quality measure
• The quality of a configuration in a CSP can be measured by the number of constraints violated
• Solving corresponds to the minimization of the number of constraint violations

![Chessboards with different number of queen violations]
Local search methods

- Are often used to find solutions to large configuration search problems with an additional optimality measure

- Properties of local search algorithms:
 - Search the space of “complete” configurations
 - Operators make “local” changes to “complete” configurations
 - Keep track of just one state (the current state), not a memory of past states
 - !!! No search tree is necessary !!!

Example: N-queens

- “Local” operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position
Example: Traveling salesman problem

Problem:
• A graph with distances

Goal: find the shortest tour which visits every city once and returns to the start
An example of a valid tour: ABCDEF

Example: Traveling salesman problem

“Local” operator for generating the next state:
• divide the existing tour into two parts,
• reconnect the two parts in the opposite order

Example:

ABCDEF
ABCD | EF |

ABCDFE
Example: Traveling salesman problem

“Local” operator:
- generates the next configuration (state)

`Diagram of configurations`:

Searching configuration space

Iterative improvement algorithms
- keep only one configuration (the current configuration) active

`Diagram of configurations`:

Problem:
- How to decide about which operator to apply?
Iterative improvement algorithms

Two strategies to choose the configuration (state) to be visited next:
- Hill climbing
- Simulated annealing

Later: Extensions to multiple current states:
- Genetic algorithms

Note: Maximization is inverse of the minimization
\[
\min f(X) \iff \max [-f(X)]
\]

Hill climbing

- Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the
Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```plaintext
function Hill-Climbing(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
  next ← a highest-valued successor of current
  if VALUE[next] < VALUE[current] then return current
  current ← next
end
```

Hill climbing

- Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value

- What can go wrong?
Hill climbing

- Hill climbing can get trapped in the local optimum

![Graph showing hill climbing with local and global maxima](image)

Hill climbing

- Hill climbing can get clueless on plateaus

![Graph showing hill climbing and plateaus](image)
Hill climbing and n-queens

- The quality of a configuration is given by the number of constraints violated
- **Then: Hill climbing** reduces the number of constraints
- **Min-conflict strategy (heuristic):**
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints

Success !! But not always!!! The local optima problem!!!

Simulated annealing

- Permits “bad” moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it – **temperature**)

![Diagram of simulated annealing process](image)