Informed (heuristic) search (cont).
Constraint-satisfaction search.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

• PS–1 due today
 – Report before the class begins
 – Programs through ftp

• PS-2 is out
 – due next week on Tuesday, September 21, 2004
 • Report
 • Programs
Evaluation-function driven search

• A search strategy can be defined in terms of a node evaluation function

• Evaluation function
 – Denoted \(f(n) \)
 – Defines the desirability of a node to be expanded next

• Evaluation-function driven search: expand the node (state) with the best evaluation-function value

• Implementation: priority queue with nodes in the decreasing order of their evaluation function value

Uniform cost search

• Uniform cost search (Dijkstra’s shortest path):
 – A special case of the evaluation-function driven search

 \[f(n) = g(n) \]

• Path cost function \(g(n) \);
 – path cost from the initial state to \(n \)

• Uniform-cost search:
 – Can handle general minimum cost path-search problem:
 – weights or costs associated with operators (links).

• Note: Uniform cost search relies on the problem definition only
 – It is an uninformed search method
Best-first search

Best-first search
- incorporates a **heuristic function**, \(h(n) \), into the evaluation function \(f(n) \) to guide the search.

Heuristic function:
- Measures a potential of a state (node) to reach a goal
- Typically in terms of some distance to a goal estimate

Example of a heuristic function:
- Assume a shortest path problem with city distances on connections
- Straight-line distances between cities give additional information we can use to guide the search

Example: traveler problem with straight-line distance information

- **Straight-line distances** give an estimate of the cost of the path between the two cities
Best-first search

Best-first search
• incorporates a **heuristic function**, \(h(n) \), into the evaluation function \(f(n) \) to guide the search.
• **heuristic function**: measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):
- Greedy search
 \[f(n) = h(n) \]
- A* algorithm
 \[f(n) = g(n) + h(n) \]
 + iterative deepening version of A*: IDA*

Greedy search method

• Evaluation function is equal to the heuristic function
 \[f(n) = h(n) \]
• **Idea**: the node that seems to be the closest to the goal is expanded first
Properties of greedy search

- **Completeness**: No.

 We can loop forever. Nodes that seem to be the best choices can lead to cycles. Elimination of state repeats can solve the problem.

- **Optimality**: No.

 Even if we reach the goal, we may be biased by a bad heuristic estimate. Evaluation function disregards the cost of the path built so far.

- **Time complexity**: \(O(b^m) \)

 Worst case !!! But often better!

- **Memory (space) complexity**: \(O(b^m) \)

 Often better!

Example: traveler problem with straight-line distance information

- **Greedy search result**: Total: 450
Example: traveler problem with straight-line distance information

- Greedy search and optimality

A* search

- The problem with the greedy search is that it can keep expanding paths that are already very expensive.
- The problem with the uniform-cost search is that it uses only past exploration information (path cost), no additional information is utilized

- **A* search**

 \[
 f(n) = g(n) + h(n)
 \]

 \(g(n)\) - cost of reaching the state
 \(h(n)\) - estimate of the cost from the current state to a goal
 \(f(n)\) - estimate of the path length

- **Additional A* condition**: admissible heuristic

 \[h(n) \leq h^*(n)\quad \text{for all } n\]
A* search example

$\text{queue} \rightarrow \text{Arad} 366$

A* search example

$\text{queue} \rightarrow \text{Sibiu} 393$

$\text{queue} \rightarrow \text{Timisoara} 447$

$\text{queue} \rightarrow \text{Zerind} 449$
A* search example

CS 2710 Foundations of AI
Properties of A* search

- Completeness: ?
- Optimality: ?
- Time complexity: – ?
- Memory (space) complexity: – ?
Properties of A* search

- Completeness: Yes.
- Optimality: ?
- Time complexity: – ?
- Memory (space) complexity: – ?

Optimality of A*

- In general, a heuristic function $h(n)$:
 - It can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$
- Is the A* optimal for an arbitrary heuristic function?
Optimality of A

- In general, a heuristic function $h(n)$:
 - Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$
- Is the A* optimal for an arbitrary heuristic function?
 - **No!**
- **Admissible heuristic condition**
 - Never overestimate the distance to the goal !!!
 - $h(n) \leq h^*(n)$ for all n

Example: the straight-line distance in the travel problem never overestimates the actual distance

Is A* search with an admissible heuristic is optimal ??

Optimality of A (proof)

- Let $G1$ be the optimal goal (with the minimum path distance). Assume that we have a sub-optimal goal $G2$. Let n be a node that is on the optimal path and is in the queue together with $G2$

- Then: $f(G2) = g(G2)$ since $h(G2) = 0$
 - $> g(G1)$ since $G2$ is suboptimal
- $\geq f(n)$ since h is admissible

And thus A* never selects $G2$ before n
Properties of A* search

- Completeness: Yes.
- Optimality: Yes (with the admissible heuristic)
- Time complexity:
 - Order roughly the number of nodes with \(f(n) \) smaller than the cost of the optimal path \(g^* \)
- Memory (space) complexity:
 - Same as time complexity (all nodes in the memory)
Admissible heuristics

- Heuristics are designed based on relaxed version of problems
- **Example:** the 8-puzzle problem

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

- **Admissible heuristics:**
 1. number of misplaced tiles
 2. Sum of distances of all tiles from their goal positions (Manhattan distance)

Admissible heuristics

- We can have multiple admissible heuristics for the same problem
- **Dominance:** Heuristic function h_1 dominates h_2 if
 \[\forall n \quad h_1(n) \geq h_2(n) \]

- **Combination:** two or more admissible heuristics can be combined to give a new admissible heuristic
 - Assume two admissible heuristics h_1, h_2

 - Then: $h_3(n) = \max(h_1(n), h_2(n))$

 is admissible
IDA*

Iterative deepening version of A*
- Progressively increases the evaluation function limit (instead of the depth limit)
- Performs limited-cost depth-first search for the current evaluation function limit
 - Keeps expanding nodes in the depth first manner up to the evaluation function limit

Problem: the amount by which the evaluation limit should be progressively increased

Solutions:
- peak over the previous step boundary
- Increase the limit by a fixed cost increment – say u
IDA*

Solution 1: peak over the previous step boundary

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- We may find a sub-optimal solution
 - **Fix 1:** increase the limit to the minimum f value above the limit
 - **Fix 2:** complete the search up to the limit to find the best

Solution 2: Increase the limit by a fixed cost increment (u)

Properties:
- Too many or too few nodes expanded – no control of the number of nodes
- The solution of accuracy difference \(< u \) is found

Constraint satisfaction search
Search problem

A search problem:
- **Search space (or state space)**: a set of objects among which we conduct the search;
- **Initial state**: an object we start to search from;
- **Operators (actions)**: transform one state in the search space to the other;
- **Goal condition**: describes the object we search for

- **Possible metric on a search space**:
 - measures the quality of the object with regard to the goal

Search problems occur in planning, optimizations, learning

Constraint satisfaction problem (CSP)

Two types of search:
- **path search** (a path from the initial state to a state satisfying the goal condition)
- **configuration search** (a configuration satisfying goal conditions)

Constraint satisfaction problem (CSP) is a **configuration search problem** where:
- A state is defined by a set of variables
- Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP allow more specific procedures to be designed and applied for solving them
Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
- Represent queens, one for each column:
 - Q_1, Q_2, Q_3, Q_4
- Values:
 - Row placement of each queen on the board
 - $\{1, 2, 3, 4\}$

Constraints:
- $Q_i \neq Q_j$ Two queens not in the same row
- $|Q_i - Q_j| \neq |i - j|$ Two queens not on the same diagonal

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)
- Used in the propositional logic (covered later)

$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)…$

Variables:
- Propositional symbols (P, R, T, S)
- Values: True, False

Constraints:
- Every conjunct must evaluate to true, at least one of the literals must evaluate to true
 $(P \lor Q \lor \neg R) \equiv True$, $(\neg P \lor \neg R \lor S) \equiv True$,…
Other real world CSP problems

Scheduling problems:
- E.g. telescope scheduling
- High-school class schedule

Design problems:
- Hardware configurations
- VLSI design

More complex problems may involve:
- real-valued variables
- additional preferences on variable assignments – the optimal configuration is sought

Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables: ?

- Variable values: ?

Constraints: ?
Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:
- Represent countries
 - A, B, C, D, E
- Values:
 - k-different colors
 - $\{\text{Red, Blue, Green,..}\}$

Constraints:?

An example of a problem with binary constraints
Constraint satisfaction as a search problem

Formulation of a CSP as a search problem:

- **States.** Assignment (partial, complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- **Goal condition.** All variables are assigned, no constraints are violated.

- **Constraints** can be represented:
 - *Explicitly* by a set of allowable values
 - *Implicitly* by a function that tests for the satisfaction of constraints

Solving CSP as a standard search

```
Unassigned: Q1, Q2, Q3, Q4
Assigned:

Unassigned: Q2, Q3, Q4
Assigned: Q1 = 1

Unassigned: Q2, Q3, Q4
Assigned: Q1 = 2

Unassigned: Q3, Q4
Assigned: Q1 = 2, Q2 = 4
```

...
Solving a CSP through standard search

- Maximum depth of the tree (m): ?
- Depth of the solution (d) : ?
- Branching factor (b) : ?

Unassigned: Q_1, Q_2, Q_3, Q_4
Assigned: $Q_1 = 1$

Unassigned: Q_2, Q_3, Q_4
Assigned: $Q_1 = 2$

Unassigned: Q_1, Q_4
Assigned: $Q_1 = 2, Q_2 = 4$

CS 2710 Foundations of AI

Solving a CSP through standard search

- Maximum depth of the tree: Number of variables of the CSP
- Depth of the solution: Number of variables of the CSP
- Branching factor: if we fix the order of variable assignments the branch factor depends on the number of their values

Unassigned: Q_1, Q_2, Q_3, Q_4
Assigned: $Q_1 = 1$

Unassigned: Q_2, Q_3, Q_4
Assigned: $Q_1 = 2$

Unassigned: Q_1, Q_4
Assigned: $Q_1 = 2, Q_2 = 4$

CS 2710 Foundations of AI
Solving a CSP through standard search

• What search algorithm to use:

Depth of the tree = Depth of the solution = number of vars

Solving a CSP through standard search

• What search algorithm to use: Depth first search !!!
 • Since we know the depth of the solution
 • We do not have to keep large number of nodes in queues
Backtracking

Depth-first search for CSP is also referred to as backtracking.

The violation of constraints needs to be checked for each node, either during its generation or before its expansion.

Consistency of constraints:

- Current variable assignments together with constraints restrict remaining legal values of unassigned variables;
- The remaining legal and illegal values of variables may be inferred (effect of constraints propagates);
- To prevent “blind” exploration it is necessary to keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search.