Learning

Types of learning

- **Supervised learning**
 - Learning mapping between inputs x and desired outputs y
 - Teacher gives me y’s for the learning purposes

- **Unsupervised learning**
 - Learning relations between data components
 - No specific outputs given by a teacher

- **Reinforcement learning**
 - Learning mapping between inputs x and desired outputs y
 - Critic does not give me y’s but instead a signal (reinforcement) of how good my answer was

- **Other types of learning:**
 - Concept learning, explanation-based learning, etc.
Supervised learning

Data: \(D = \{d_1, d_2, \ldots, d_n\} \) a set of \(n \) examples
\[
d_i = \langle x_i, y_i \rangle
\]
\(x_i \) is input vector, and \(y \) is desired output (given by a teacher)

Objective: learn the mapping \(f: X \rightarrow Y \)
s.t. \(y_i \approx f(x_i) \) for all \(i = 1, \ldots, n \)

Two types of problems:
- **Regression**: \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **continuous**
- **Classification**: \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **discrete**

Supervised learning examples

- **Regression**: \(Y \) is **continuous**

 Debt/equity
 Earnings
 Future product orders \(\rightarrow \) company stock price

- **Classification**: \(Y \) is **discrete**

 Handwritten digit (array of 0,1s) \(\rightarrow \) Label “3”
Unsupervised learning

- **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)

- \(d_i = x_i \) vector of values

- No target value (output) \(y \)

- **Objective:**
 - learn relations between samples, components of samples

Types of problems:

- **Clustering**
 - Group together “similar” examples, e.g. patient cases

- **Density estimation**
 - Model probabilistically the population of samples, e.g. relations between the diseases, symptoms, lab tests etc.

Unsupervised learning example.

- **Density estimation.** We want to build the probability model of a population from which we draw samples \(d_i = x_i \)
Unsupervised learning. Density estimation

- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians

Reinforcement learning

- We want to learn: \(f : X \rightarrow Y \)
- We see samples of \(x \) but not \(y \)
- Instead of \(y \) we get a feedback (reinforcement) from a critic about how good our output was

The goal is to select output that leads to the best reinforcement
Learning

• Assume we see examples of pairs \((x, y)\) and we want to learn the mapping \(f : X \rightarrow Y\) to predict future \(y\)s for values of \(x\)
• We get the data what should we do?

Learning bias

• **Problem:** many possible functions \(f : X \rightarrow Y\) exists for representing the mapping between \(x\) and \(y\)
• Which one to choose? Many examples still unseen!
Learning bias

- Problem is easier when we make an assumption about the model, say, $f(x) = ax + b$
- Restriction to a linear model is an example of the learning bias

Bias provides the learner with some basis for choosing among possible representations of the function.

Forms of bias: constraints, restrictions, model preferences

Important: There is no learning without a bias!
Learning bias

- Choosing a parametric model or a set of models is not enough
 Still too many functions \(f(x) = ax + b \)
 - One for every pair of parameters \(a, b \)

Fitting the data to the model

We are interested in finding the best set of model parameters

How is the best set defined?

Our goal is to have the parameters that:
- reduce the misfit between the model and data
- Or, (in other words) that explain the data the best

Error function:

Gives a measure of misfit between the data and the model

- Examples of error functions:
 - Mean square error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 - Misclassification error
 Average # of misclassified cases \(y_i \neq f(x_i) \)
Fitting the data to the model

- **Linear regression**
 - Least squares fit with the linear model
 - minimizes \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

![Graph showing linear regression](image)

Typical learning

Three basic steps:
- **Select a model** or a set of models (with parameters)
 - E.g. \(y = ax + b \)
- **Select the error function** to be optimized
 - E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
- **Find the set of parameters optimizing the error function**
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about …
Learning

Problem
• We fit the model based on past experience (past examples seen)
• But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error: \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

True (generalization) error (over the whole and not completely known population):

\[E_{(x,y)} (y - f(x))^2 \]

Expected squared error

The training error tries to approximate the true error.

But does a good training error always imply a good generalization error?

Overfitting

• Assume we have a set of 10 points and we consider polynomial functions as our possible models
Overfitting

- Fitting a linear function with mean-squares error
- Error is nonzero

Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error
Overfitting

• Is it always good to minimize the error of the observed data?

Overfitting

• For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
• Is it always good to minimize the training error?
Overfitting

• For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
• Is it always good to minimize the training error? NO !!
• More important: How do we perform on the unseen data?

Overfitting

• The situation when the training error is low and the generalization error is high. Causes of the phenomenon:
 – Model with more degrees of freedom (more parameters)
 – Small data size (as compared to the complexity of model)
Evaluation framework

- We want our classifier to generalize well to future examples
- **Problem:** But we do not know all future examples !!!
- **Solution:** evaluate the classifier on the **test set** that is withheld from the learning stage

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}(y - f(x))^2 \]
 - But it cannot be computed exactly
- **Optimizing (mean) training error** can lead to overfit, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
- The generalization error is more objectively estimated using a separate test data set with \(m \) data samples
- **(Mean) test error**
 \[\frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2 \]
Design of a learning system

1. **Data:** \(D = \{d_1, d_2, ..., d_n\} \)

2. **Model selection:**
 - **Select a model** or a set of models (with parameters)

 E.g. \(y = ax + b \)
 - **Select the error function** to be optimized

 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

3. **Learning:**
 - **Find the set of parameters optimizing the error function**

 – The model and parameters with the smallest error

4. **Application:**
 - **Apply the learned model**

 – E.g. predict \(y \)s for new inputs \(x \) using learned \(f(x) \)
Linear regression.

Supervised learning

Data: \(D = \{D_1, D_2, \ldots, D_n\} \) a set of \(n \) examples

\[D_i = \langle x_i, y_i \rangle \]

\(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,d}) \) is an input vector of size \(d \)

\(y_i \) is the desired output (given by a teacher)

Objective: learn the mapping \(f: X \rightarrow Y \)

s.t. \(y_i \approx f(x_i) \) for all \(i = 1, \ldots, n \)

- **Regression:** \(Y \) is **continuous**
 Example: earnings, product orders \(\rightarrow \) company stock price

- **Classification:** \(Y \) is **discrete**
 Example: handwritten digit in binary form \(\rightarrow \) digit label
Linear regression

Function \(f : X \rightarrow Y \) is a linear combination of input components

\[
f(x) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = w_0 + \sum_{j=1}^{d} w_j x_j
\]

- **parameters (weights)**

Shorter (vector) definition of the model

- Include bias constant in the input vector

\[
x = (1, x_1, x_2, \ldots, x_d)
\]

\[
f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = w^T x
\]

- **parameters (weights)**

CS 2710 Foundations of AI
Linear regression. Error.

- **Data:** \(D_i = \langle x_i, y_i \rangle \)
- **Function:** \(x_i \rightarrow f(x_i) \)
- We would like to have \(y_i \approx f(x_i) \) for all \(i = 1,\ldots, n \)

- **Error function**
 - measures how much our predictions deviate from the desired answers

 \[
 \text{Mean-squared error} \quad J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]

- **Learning:**

 We want to find the weights minimizing the error!
Linear regression. Example.

- 2 dimensional input $\mathbf{x} = (x_1, x_2)$

Linear regression. Optimization.

- We want the weights minimizing the error

$$J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0

$$\frac{\partial}{\partial w_j} J_n (\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,j} = 0$$

- Vector of derivatives:

$$\text{grad}_w (J_n (\mathbf{w})) = \nabla_w (J_n (\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \mathbf{0}$$
Linear regression. Optimization.

- \(\text{grad}_w (J_n(w)) = \overrightarrow{0} \) defines a set of equations in \(w \)

\[
\frac{\partial}{\partial w_0} J_n(w) = -2 \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) = 0
\]

\[
\frac{\partial}{\partial w_1} J_n(w) = -2 \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,1} = 0
\]

\[
\vdots
\]

\[
\frac{\partial}{\partial w_j} J_n(w) = -2 \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,j} = 0
\]

\[
\vdots
\]

\[
\frac{\partial}{\partial w_d} J_n(w) = -2 \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,d} = 0
\]

Solving linear regression

\[
\frac{\partial}{\partial w_j} J_n(w) = -2 \sum_{i=1}^{n} (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \ldots - w_d x_{i,d}) x_{i,j} = 0
\]

By rearranging the terms we get a system of linear equations with \(d+1 \) unknowns

\[
Aw = b
\]

\[
w_0 \sum_{i=1}^{n} x_{i,0} + w_1 \sum_{i=1}^{n} x_{i,1} + \ldots + w_j \sum_{i=1}^{n} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} = \sum_{i=1}^{n} y_i
\]

\[
w_0 \sum_{i=1}^{n} x_{i,0} x_{i,1} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,1} + \ldots + w_j \sum_{i=1}^{n} x_{i,j} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,d} = \sum_{i=1}^{n} y_i x_{i,1}
\]

\[
\vdots
\]

\[
w_0 \sum_{i=1}^{n} x_{i,j} x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,j} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j}
\]

\[
\vdots
\]
Solving linear regression

- The optimal set of weights satisfies:
 \[\nabla_w (J_n(w)) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i) x_i = 0 \]

Leads to a system of linear equations (SLE) with \(d+1\) unknowns of the form

\[\mathbf{A} \mathbf{w} = \mathbf{b} \]

\[w_0 \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j} \]

Solution to SLE: ?

- matrix inversion

\[\mathbf{w} = \mathbf{A}^{-1} \mathbf{b} \]
Gradient descent solution

Goal: the weight optimization in the linear regression model

\[J_n = Error(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]

An alternative to SLE solution:

- **Gradient descent**

 Idea:
 - Adjust weights in the direction that improves the Error
 - The gradient tells us what is the right direction

 \[w \leftarrow w - \alpha \nabla_w Error_i(w) \]

 \(\alpha > 0 \) - a **learning rate** (scales the gradient changes)

Gradient descent method

- Descend using the gradient information

- Change the value of \(w \) according to the gradient

\[w \leftarrow w - \alpha \nabla_w Error_i(w) \]
Gradient descent method

- New value of the parameter

\[w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} \text{Error} (w) |_{w*} \]
For all \(j \)

\(\alpha > 0 \) - a learning rate (scales the gradient changes)

Gradient descent method

- Iteratively converge to the optimum of the Error function
Online gradient algorithm

- The error function is defined for the whole dataset D
 \[J_n = Error(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]
- error for a sample $D_i = \langle x_i, y_i \rangle$
 \[J_{\text{online}} = Error_i(w) = \frac{1}{2} (y_i - f(x_i, w))^2 \]
- **Online gradient method**: changes weights after every sample
 \[w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} Error_i(w) \]
- **vector form**:
 \[w \leftarrow w - \alpha \nabla_w Error_i(w) \]
 $\alpha > 0$ - Learning rate that depends on the number of updates

Online gradient method

Linear model \[f(x) = w^T x \]
On-line error \[J_{\text{online}} = Error_i(w) = \frac{1}{2} (y_i - f(x_i, w))^2 \]

On-line algorithm: generates a sequence of online updates

(i)-th update step with : $D_i = \langle x_i, y_i \rangle$

j-th weight:
\[
\begin{align*}
 w_j^{(i)} &\leftarrow w_j^{(i-1)} - \alpha(i) \frac{\partial Error_i(w)}{\partial w_j} \big|_{w^{(i-1)}} \\
 w_j^{(i)} &\leftarrow w_j^{(i-1)} + \alpha(i)(y_i - f(x_i, w^{(i-1)}))x_{i,j}
\end{align*}
\]

Annealed learning rate: $\alpha(i) \approx \frac{1}{i}$
- Gradually rescales changes in weights
Online regression algorithm

Online-linear-regression (*D, number of iterations*)

Initialize weights $w = (w_0, w_1, w_2 \ldots w_d)$

for $i = 1:1: \text{number of iterations}$

do select a data point $D_i = (x_i, y_i)$ from D

set $\alpha = 1/i$

update weight vector

$w \leftarrow w + \alpha(y_i - f(x_i, w))x_i$

end for

return weights w

- **Advantages:** very easy to implement, continuous data streams