Modeling uncertainty with probabilities

• **Knowledge based system era (70s – early 80’s)**
 – **Extensional non-probabilistic models**
 – Solve the space, time and acquisition bottlenecks in probability-based models
 – froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general

• Breakthrough (late 80s, beginning of 90s)
 – **Bayesian belief networks**
 • Give solutions to the space, acquisition bottlenecks
 • Partial solutions for time complexities
 • Bayesian belief network
Bayesian belief networks (BBNs)

Bayesian belief networks.
- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables

- **A and B are independent**
 \[P(A, B) = P(A)P(B) \]
- **A and B are conditionally independent given C**
 \[
 P(A, B | C) = P(A | C)P(B | C) \\
 P(A | C, B) = P(A | C)
 \]

Bayesian belief networks (general)

Two components: \(B = (S, \Theta_S) \)

- **Directed acyclic graph**
 - Nodes correspond to random variables
 - (Missing) links encode independences

- **Parameters**
 - Local conditional probability distributions for every variable-parent configuration

Where:
- \(pa(X_i) \) - stand for parents of \(X_i \)

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Bayesian belief network.

\[
\begin{array}{c|c|c|c}
\text{Burglary} & T & F \\
0.001 & 0.999 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
\text{Earthquake} & T & F \\
0.002 & 0.998 \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c}
\text{Alarm} & \text{B} & \text{E} & T & F \\
& & & 0.95 & 0.05 \\
& & & 0.94 & 0.06 \\
& & & 0.29 & 0.71 \\
& & & 0.001 & 0.999 \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c}
\text{JohnCalls} & \text{A} & \text{T} & \text{F} \\
& 0.90 & 0.1 \\
& 0.05 & 0.95 \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c}
\text{MaryCalls} & \text{M} & \text{A} & \text{T} & \text{F} \\
& 0.7 & 0.3 \\
& 0.01 & 0.99 \\
\end{array}
\]

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

\[
P(X_1, X_2, \ldots, X_n) = \prod_{i=1, \ldots, n} P(X_i \mid \text{pa}(X_i))
\]

Example:
Assume the following assignment of values to random variables:
\[B=T, E=T, A=T, J=T, M=F\]

Then its probability is:
\[
\]
Bayesian belief networks (BBNs)

Bayesian belief networks
• Represent the full joint distribution over the variables more compactly using the product of local conditionals.
• But how did we get to local parameterizations?

Answer:
• **Graphical structure** encodes **conditional and marginal independences** among random variables

 • **A and B are independent** \[P(A, B) = P(A)P(B) \]
 • **A and B are conditionally independent given C**
 \[P(A | C, B) = P(A | C) \]
 \[P(A, B | C) = P(A | C)P(B | C) \]
 • **The graph structure implies the decomposition !!!**

Independences in BBNs

3 basic independence structures:

1. [Diagram of independence structure 1]
2. [Diagram of independence structure 2]
3. [Diagram of independence structure 3]
Independences in BBN

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called d-separation
- **D-separation and independence**
 - Let \(X, Y \) and \(Z \) be three sets of nodes
 - If \(X \) and \(Y \) are d-separated by \(Z \), then \(X \) and \(Y \) are conditionally independent given \(Z \)
- **D-separation**
 - \(A \) is d-separated from \(B \) given \(C \) if every undirected path between them is blocked with \(C \)
- **Path blocking**
 - 3 cases that expand on three basic independence structures

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls \(F \)
- Burglary and MaryCalls are independent (not knowing Alarm) \(F \)
- Burglary and RadioReport are independent given Earthquake \(T \)
- Burglary and RadioReport are independent given MaryCalls \(F \)
Bayesian belief networks (BBNs)

Bayesian belief networks
- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

\[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i)) \]

- The decomposition is implied by the set of independences encoded in the belief network.

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

\[P(B=T, E=T, A=T, J=T, M=F) = \]

\[= P(J=T \mid B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F) \]

\[= \underbrace{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \]

\[P(M=F \mid B=T, E=T, A=T)P(B=T, E=T, A=T) \]

\[P(M=F \mid A=T)P(B=T, E=T, A=T) \]

\[P(A=T \mid B=T, E=T)P(B=T, E=T) \]

\[= P(J=T \mid A=T)P(M=F \mid A=T)P(A=T \mid B=T, E=T)P(B=T)P(E=T) \]
Bayesian belief network.

- In the BBN the **full joint distribution** is expressed using a set of local conditional distributions.

\[P(B) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>

\[P(E) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.002</td>
<td>0.998</td>
</tr>
</tbody>
</table>

\[P(A|B,E) \]

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>E</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>0.95</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.94</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.29</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0.001</td>
<td>0.999</td>
<td></td>
</tr>
</tbody>
</table>

\[P(J|A) \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.90</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.05</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

\[P(M|A) \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.01</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

Parameter complexity problem

- In the BBN the **full joint distribution** is defined as:
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | pa(X_i)) \]

- **What did we save?**

 Alarm example: 5 binary (True, False) variables

 \# of parameters of the full joint:
 \[2^5 = 32 \]

 One parameter is for free:
 \[2^5 - 1 = 31 \]

 \# of parameters of the BBN:
 \[2^3 + 2(2^2) + 2(2) = 20 \]

 One parameter in every conditional is for free:
 \[2^2 + 2(2) + 2(1) = 10 \]
Model acquisition problem

The structure of the BBN
• typically reflects causal relations
 (BBNs are also sometime referred to as causal networks)
• Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN
• are conditional distributions relating random variables and their parents
• Complexity is much smaller than the full joint
• It is much easier to obtain such probabilities from the expert or learn them automatically from data

BBNs built in practice
• In various areas:
 – Intelligent user interfaces (Microsoft)
 – Troubleshooting, diagnosis of a technical device
 – Medical diagnosis:
 • Pathfinder (Intellipath)
 • CPSC
 • Munin
 • QMR-DT
 – Collaborative filtering
 – Military applications
 – Business and finance
 • Insurance, credit applications
Inference

•

Inference in Bayesian networks

• BBN models compactly the full joint distribution by taking advantage of existing independences between variables
• Simplifies the acquisition of a probabilistic model
• But we are interested in solving various inference tasks:
 – Diagnostic task. (from effect to cause)
 \[P(\text{Burglary} \mid \text{JohnCalls} = T) \]
 – Prediction task. (from cause to effect)
 \[P(\text{JohnCalls} \mid \text{Burglary} = T) \]
 – Other probabilistic queries (queries on joint distributions).
 \[P(\text{Alarm}) \]
• Main issue: Can we take advantage of independences to construct special algorithms and speeding up the inference?
Inference in Bayesian networks

• **Bad news:**
 – Exact inference problem in BBNs is NP-hard (Cooper)
 – Approximate inference is NP-hard (Dagum, Luby)
• **But** very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute: \(P(J = T) \)

Inference in Bayesian networks

Computing: \(P(J = T) \)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

\[
P(J = T) = \\
= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m) \\
= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a) P(M = m | A = a) P(A = a | B = b, E = e) P(B = b) P(E = e)
\]

Computational cost:
- Number of additions: ?
- Number of products: ?
Inference in Bayesian networks

Computing: \(P(J = T) \)

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

\[
P(J = T) = \\
= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m) \\
= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a) P(M = m | A = a) P(A = a | B = b, E = e) P(B = b) P(E = e)
\]

Computational cost:

Number of additions: 15
Number of products: 64
Inference in Bayesian networks

Approach 2. Interleave sums and products

- Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

\[P(J = T) = \]

\[= \sum_{b \in T,F} \sum_{o \in T,F} \sum_{m \in T,F} P(J = T | A = a) P(M = m | A = a) P(A = a | B = b, E = e) P(B = b) P(E = e) \]

\[= \sum_{b \in T,F} \sum_{o \in T,F} \sum_{m \in T,F} P(J = T | A = a) P(M = m | A = a) P(B = b) \left[\sum_{o \in T,F} P(A = a | B = b, E = e) P(E = e) \right] \]

\[= \sum_{m \in T,F} P(M = m | A = a) \left[\sum_{b \in T,F} P(B = b) \left[\sum_{o \in T,F} P(A = a | B = b, E = e) P(E = e) \right] \right] \]

Computational cost:

Number of additions: \(1 + 2 \times [1 + 1 + 2 \times 1] = 9\)

Number of products: \(2 \times [2 + 2 \times (1 + 2 \times 1)]\)
Inference in Bayesian networks

Approach 2. Interleave sums and products

- Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

\[P(J = T) = \]
\[= \sum_{\text{bc}, \text{tc}, \text{sc}} \sum_{\text{bc}, \text{tc}, \text{sc}} \sum_{\text{mc}, \text{fc}} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e) \]
\[= \sum_{\text{bc}, \text{tc}, \text{sc}} \sum_{\text{bc}, \text{tc}, \text{sc}} \sum_{\text{mc}, \text{fc}} P(J = T | A = a)P(M = m | A = a)P(B = b)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(A = a | B = b, E = e)P(E = e) \right) \]
\[= \sum_{\text{bc}, \text{tc}, \text{sc}} P(J = T | A = a)\left(\sum_{\text{mc}, \text{fc}} P(M = m | A = a) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(B = b) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(A = a | B = b, E = e)P(E = e) \right) \]

Computational cost:

Number of additions: 1+2*\(1+1+2*1\)=9

Number of products: 2*[2+2*(1+2*1)]=16

Inference in Bayesian networks

- The smart interleaving of sums and products can help us to speed up the computation of joint probability queries

- What if we want to compute: \(P(B = T, J = T) \)

\[P(B = T, J = T) = \]
\[= \sum_{\text{mc}, \text{fc}} P(J = T | A = a)\left(\sum_{\text{mc}, \text{fc}} P(M = m | A = a) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(B = T) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(A = a | B = T, E = e)P(E = e) \right) \]

\[P(J = T) = \]
\[= \sum_{\text{mc}, \text{fc}} P(J = T | A = a)\left(\sum_{\text{mc}, \text{fc}} P(M = m | A = a) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(B = b) \right)\left(\sum_{\text{bc}, \text{tc}, \text{sc}} P(A = a | B = b, E = e)P(E = e) \right) \]

- A lot of shared computation
 - Smart cashing of results can save the time for more queries
Inference in Bayesian networks

- The smart interleaving of sums and products can help us to speed up the computation of joint probability queries.
- What if we want to compute: \(P(B = T, J = T) \)

\[
P(B = T, J = T) =
\sum_{a \in F} P(J = T | A = a) \left[\sum_{m \in F} P(M = m | A = a) \right] P(B = T) \left[\sum_{k \in F} P(A = k | B = T, E = e) P(E = e) \right]
\]

\[
P(J = T) =
\sum_{a \in F} P(J = T | A = a) \left[\sum_{m \in F} P(M = m | A = a) \right] \sum_{k \in F} P(B = k) \left[\sum_{e \in F} P(A = e | B = b, E = e) P(E = e) \right]
\]

- A lot of shared computation
 - Smart cashing of results can save the time if more queries

Inference in Bayesian networks

- When cashing of results becomes handy?
- What if we want to compute a diagnostic query:

\[
P(B = T | J = T) = \frac{P(B = T, J = T)}{P(J = T)}
\]

- Exactly probabilities we have just compared!!
- There are other queries when cashing and ordering of sums and products can be shared and saves computation

\[
P(B | J = T) = \frac{P(B, J = T)}{P(J = T)} = \alpha P(B, J = T)
\]

- General technique: Variable elimination
Inference in Bayesian networks

- General idea of variable elimination

\[
P(\text{True}) = 1 = \\
\sum_{a \in F} \left[\sum_{j \in J} P(J = j | A = a) \right] \left[\sum_{m \in M} P(M = m | A = a) \right] \left[\sum_{b \in B} P(B = b) \right] \left[\sum_{e \in E} P(E = e) \right] \\
\]

\[
\begin{align*}
& f_J(a) \\
& f_M(a) \\
& f_E(a,b) \\
& f_B(a) \\
&
\end{align*}
\]

Variable order:

![Diagram showing variable order with nodes J, M, B, E and edges connecting them.]

Results cashed in the tree structure

Inference in Bayesian network

- **Exact inference algorithms:**
 - Variable elimination
 - Symbolic inference (D’Ambrosio)
 - Recursive decomposition (Cooper)
 - Message passing algorithm (Pearl)
 - Clustering and joint tree approach (Lauritzen, Spiegelhalter)
 - Arc reversal (Olmsted, Schachter)

- **Approximate inference algorithms:**
 - Monte Carlo methods:
 - Forward sampling, Likelihood sampling
 - Variational methods
Monte Carlo approaches

- **MC approximation:**
 - The probability is approximated using sample frequencies
 - Example:
 \[\tilde{P}(B = T, J = T) = \frac{N_{B=T,J=T}}{N} \]

 \# samples with \(B = T, J = T \)
 total \# samples

- **BBN sampling:**
 - Generate sample in a top down manner, following the links
 - One sample gives one assignment of values to all variables

BBN sampling example

- **P(B):**
 - T: 0.001, F: 0.999

- **P(E):**
 - T: 0.002, F: 0.998

- **P(A|B,E):**
 - T T: 0.95, T F: 0.94, F T: 0.29, F F: 0.001

- **P(J|A):**
 - A T: 0.90, A F: 0.05

- **P(M|A):**
 - A T: 0.7, A F: 0.01
BBN sampling example

<table>
<thead>
<tr>
<th>Event</th>
<th>P(B)</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>F</td>
<td>0.999</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| Condition | P(A|B,E) | P(J|A) | P(M|A) |
|-----------|---------|-------|--------|
| B: T E: T | 0.95 | 0.90 | 0.7 |
| B: T E: F | 0.05 | 0.1 | 0.3 |
| B: F E: T | 0.94 | 0.05 | 0.01 |
| B: F E: F | 0.06 | 0.95 | 0.99 |

| Condition | P(A|B,E) | P(J|A) | P(M|A) |
|-----------|---------|-------|--------|
| B: T E: T | 0.95 | 0.90 | 0.7 |
| B: T E: F | 0.05 | 0.1 | 0.3 |
| B: F E: T | 0.94 | 0.05 | 0.01 |
| B: F E: F | 0.06 | 0.95 | 0.99 |

CS 2710 Foundations of AI
BBN sampling example

Table 1: Probabilities of B, E, A, J, and M conditions.

<table>
<thead>
<tr>
<th></th>
<th>B (T)</th>
<th>B (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (T)</td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td>E (F)</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>J (T)</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>J (F)</td>
<td>0.05</td>
<td>0.95</td>
</tr>
<tr>
<td>M (T)</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>M (F)</td>
<td>0.01</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure: A Bayesian network diagram showing the relationships between Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls.
BBN sampling example

Monte Carlo approaches

- **MC approximation of conditional probabilities:**
 - The probability is approximated using sample frequencies
 - **Example:**
 \[
 \tilde{P}(B = T \mid J = T) = \frac{N_{B=T,J=T}}{N_{J=T}}
 \]

- **Rejection sampling:**
 - Generate sample for the full joint by sampling BBN
 - Use only samples that agree with the condition, the remaining samples are rejected

- **Problem:** many samples can be rejected
Likelihood weighting

- **Avoids inefficiencies of rejection sampling**
 - Idea: generate only samples consistent with an evidence (or conditioning event)
 - If the value is set no sampling (random choice occurs)
- **Problem:** using simple counts is not enough since these may occur with different probabilities
- Likelihood weighting:
 - With every sample keep a weight with which it should count towards the estimate

\[
\tilde{P}(B = T \mid J = T) = \frac{\sum_{\text{samples with } B=\text{T and } J=T} W_{B=\text{T}}}{\sum_{\text{samples with any value of } B \text{ and } J=T} W_{B=x}}
\]

BBN likelihood weighting example

<table>
<thead>
<tr>
<th>Burglary</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.001</td>
</tr>
<tr>
<td>F</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.002</td>
</tr>
<tr>
<td>F</td>
<td>0.998</td>
</tr>
</tbody>
</table>

P(A	B,E)		
B	E	T	F
T	T	0.95	0.05
T	F	0.94	0.06
F	T	0.29	0.71
F	F	0.001	0.999

P(J	A)	
A	T	F
T	0.90	0.1
F	0.05	0.95

P(M	A)	
A	T	F
T	0.7	0.3
F	0.01	0.99

J = T (set !!!)
BBN likelihood weighting example

\[P(B) \]

\[\begin{array}{cc} T & F \\ 0.001 & 0.999 \end{array} \]

JohnCalls

J = T (set !!!)

Earthquake

\[P(E) \]

\[\begin{array}{cc} T & F \\ 0.002 & 0.998 \end{array} \]

MaryCalls

\[P(J|A) \]

\[\begin{array}{cc} T & F \\ 0.90 & 0.05 \end{array} \]

\[P(M|A) \]

\[\begin{array}{cc} T & F \\ 0.7 & 0.3 \end{array} \]

CS 2710 Foundations of AI
BBN likelihood weighting example

<table>
<thead>
<tr>
<th></th>
<th>P(B)</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>F</td>
<td>0.999</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| | P(A|B,E) | P(M|A) |
|---|-----------|----------|
| T | 0.90 | 0.7 |
| T | 0.1 | 0.3 |
| F | 0.05 | 0.01 |

J = T (set !!!)

The sample weight: w = 0.05