Non-parametric density estimation

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Nonparametric Density Estimation

- **Parametric distribution models** are:
 - restricted to specific functional forms, which may not always be suitable;
 - **Example:** modelling a multimodal distribution with a single, unimodal model.

- **Nonparametric approaches:**
 - Do not make any strong assumptions about the overall shape of the distribution being modelled.
Nonparametric Methods

Histogram methods:
partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i, in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.
- Binning does not work well in a d-dimensional space.

Nonparametric Methods

- Binning does not work well in the in a d-dimensional space,
 - M bins in each dimension will require M^d bins!
- **Solution:**
 - Build the estimates of $p(x)$ by considering the data points in D and how similar (or close) they are to x
 - **Example: Parzen window**
 - As if we build a bin dynamically for x for which we need $p(x)$
Nonparametric Methods

- Assume observations drawn from a density \(p(x) \) and consider a small region \(R \) containing \(x \) such that
 \[
P = \int_{R} p(x) \, dx
\]

- The probability that \(K \) out of \(N \) observations lie inside \(R \) is \(\text{Bin}(K,N,P) \) and if \(N \) is large
 \[
 K \approx NP
 \]

If the volume of \(R \), \(V \), is sufficiently small, \(p(x) \) is approximately constant over \(R \) and

\[
P \approx p(x)V
\]

Thus

\[
p(x) = \frac{P}{V}
\]

Putting things together we get:

\[
p(x) = \frac{K}{NV}
\]

Nonparametric methods: kernel methods

Solution 1: Estimate the probability for \(x \) based on the fixed volume \(V \) built around \(x \)

\[
p(x) = \frac{K}{NV}
\]

- Fix \(V \), estimate \(K \) from the data

Example: Parzen window
Nonparametric methods: kernel methods

Kernel Density Estimation:

- **Parzen window**: Let \(R \) be a hypercube centred on \(x \) that defines the kernel function:

\[
k\left(\frac{x - x_n}{h}\right) = \begin{cases}
1 & |(x_i - x_n)| / h \leq 1/2 \\
0 & \text{otherwise}
\end{cases}, \quad i = 1, \ldots, D
\]

- It follows that

\[
K = \sum_{n=1}^{N} k\left(\frac{x - x_n}{h}\right)
\]

- and hence

\[
p(x) = \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k\left(\frac{x - x_n}{h}\right)
\]

Nonparametric Methods: smooth kernels

To avoid discontinuities in \(p(x) \) because of sharp boundaries we can use a smooth kernel, e.g. a Gaussian

- Any kernel such that

\[
h \cdot \text{acts as a smoother.}
\]
Nonparametric Methods: kNN estimation

Solution 2: Estimate the probability for \(x \) based on a fixed count \(K \) for a variable volume \(V \) built around \(x \)

fix \(K \), estimate \(V \) from the data

Nearest Neighbour Density Estimation:

Consider a hyper-sphere centred on \(x \) and let it grow to a volume, \(V^* \), that includes \(K \) of the given \(N \) data points. Then

\[
p(x) \simeq \frac{K}{NV^*}.
\]

Nonparametric vs Parametric Methods

Nonparametric models:

- More flexibility – no density model is needed
- But require storing the entire dataset
- And the computation is performed with all data examples.

Parametric models:

- Once fitted, only parameters need to be stored
- They are much more efficient in terms of computation
- But the model needs to be picked in advance