A learning system: basic cycle

1. **Data:** \(D = \{d_1, d_2, ..., d_n\} \)
2. **Model selection:**
 - Select a model or a set of models (with parameters)

 E.g. \(y = ax + b \)
3. **Choose the objective function**
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. **Learning:**
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. **Testing/validation:**
 - Evaluate on the test data
6. **Application**
 - Apply the learned model to new data \(f(x) \)
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g. \(y = ax + b \)

3. Choose the objective function
 - Squared error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Testing/validation:
 - Evaluate on the test data

6. Application
 - Apply the learned model to new data \(f(x) \)
Steps taken when designing an ML system

Data
Model selection
Choice of Error function
Learning/optimization
Evaluation
Application

Add some complexity

Data
Data cleaning/preprocessing
Feature selection/dimensionality reduction
Model selection
Choice of Error function
Learning/optimization
Evaluation
Application
Designing an ML solution

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Data source and data biases

- Understand the data source
- Understand the data your models will be applied to
- Watch out for data biases:
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased

• Results (conclusions) derived for a biased dataset do not hold in general !!!

Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:
- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:
- Would you trust the model?
- Are there any biases in the data?
Steps taken when designing an ML system

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Data cleaning and preprocessing

Data you receive may not be perfect:
- Cleaning
- Preprocessing (conversions)

Cleaning:
- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:
- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes
Data preprocessing

- **Renaming** (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

 - High \rightarrow 2
 - Normal \rightarrow 1
 - Low \rightarrow 0
 - True \rightarrow 2
 - False \rightarrow 1
 - Unknown \rightarrow 0
 - Red \rightarrow 2
 - Blue \rightarrow 1
 - Green \rightarrow 0

- **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].

![Diagram of rescaling](image)

Data preprocessing

- **Discretizations (binning):** continuous values to a finite set of discrete values

- **Example:**

![Diagram of discretizations](image)

- **Another Example:**

![Another diagram](image)
Data preprocessing

- **Abstraction:** merge together categorical values

- **Aggregation:** summary or aggregation operations, such as minimum value, maximum value, average etc.

- **New attributes:**
 - example: obesity-factor = weight/height

Steps taken when designing an ML system

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Feature selection

• **The size (dimensionality) of a sample** can be enormous

\[x_i = (x_i^1, x_i^2, ..., x_i^d) \quad d \text{ - very large} \]

• **Example: document classification**
 – 10,000 different words
 – Inputs: counts of occurrences of different words
 – Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)

• **Dimensionality reduction: replace inputs with features**
 – **Extract relevant inputs** (e.g. mutual information measure)
 – PCA – principal component analysis
 – **Group (cluster) similar words** (uses a similarity measure)
 • Replace with the group label

Steps taken when designing an ML system

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- **Model selection**
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Model selection

• **What is the right model to learn?**
 – A prior knowledge helps a lot, but still a lot of guessing
 – Initial data analysis and visualization
 • We can make a good guess about the form of the distribution, shape of the function
 – Independences and correlations

• **Overfitting problem**
 – Take into account the bias and variance of error estimates
 – Simpler (more biased) model – parameters can be estimated more reliably (smaller variance of estimates)
 – Complex model with many parameters – parameter estimates are less reliable (large variance of the estimate)

Solutions for overfitting

How to make the learner avoid the overfit?

• **Assure sufficient number of samples** in the training set
 – May not be possible (small number of examples)

• **Hold some data out of the training set = validation set**
 – Train (fit) on the training set (w/o data held out);
 – Check for the generalization error on the validation set, choose the model based on the validation set error (cross-validation techniques)

• **Regularization (Occam’s Razor)**
 – Penalize for the model complexity (number of parameters) in the objective function
 – Explicit preference towards simple models
Steps taken when designing an ML system

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Learning: objective functions

- **Learning = optimization problem.** Various criteria:
 - Mean square error
 \[w^* = \arg \min_w Error(w) \quad Error(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2 \]
 - Maximum likelihood (ML) criterion
 \[\Theta^* = \max_\Theta P(D \mid \Theta) \quad Error(\Theta) = -\log P(D \mid \Theta) \]
 - Maximum posterior probability (MAP)
 \[\Theta^* = \max_\Theta P(\Theta \mid D) \quad P(\Theta \mid D) = \frac{P(D \mid \Theta)P(\Theta)}{P(D)} \]
Learning

Learning = optimization problem

• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.

• Parameter optimizations
 • Gradient descent, Conjugate gradient
 • Newton-Rhapson
 • Levenberg-Marquard

Some can be carried on-line on a sample by sample basis

Combinatorial optimizations (over discrete spaces):
 • Hill-climbing
 • Simulated-annealing
 • Genetic algorithms

Parametric optimizations

• Sometimes can be solved directly but this depends on the objective function and the model
 – Example: squared error criterion for the linear regression
• Very often the objective function to be optimized is not that nice.
 \[Error(w) = f(w) \]
 - a complex function of weights (parameters)
 \[\text{Goal: } w^* = \arg \min_w f(w) \]
• One solution: iterative optimization methods
• Example: Gradient-descent method
 Idea: move the weights (free parameters) gradually in the error decreasing direction
Gradient descent method

• Descend to the minimum of the function using the gradient information

\[\frac{\partial}{\partial w} \text{Error}(w) \big|_{w^*} \]

\[w^* \]

\[w \]

• Change the parameter value of \(w \) according to the gradient

\[w \leftarrow w^* - \alpha \frac{\partial}{\partial w} \text{Error}(w) \big|_{w^*} \]

\(\alpha > 0 \) - a learning rate (scales the gradient changes)
Gradient descent method

- To get to the function minimum repeat (iterate) the gradient based update few times

![Gradient descent method diagram](image)

- **Problems**: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g., second derivatives)

On-line learning (optimization)

- Error function looks at all data points at the same time

E.g. \[Error(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]

- **On-line error** - separates the contribution from a data point

\[Error_{ON-LINE}(w) = (y_i - f(x_i, w))^2 \]

- **Example**: On-line gradient descent

![On-line learning diagram](image)

- **Advantages**: 1. simple learning algorithm
 2. no need to store data (on-line data streams)
Steps taken when designing an ML system

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Evaluation of models

- Simple holdout method

Dataset

- Training set
- Testing set

Evaluate

Learn (fit)

Predictive model
Evaluation measures

Regression model $f: X \rightarrow Y$ where Y is real valued

- Mean Squared Error

 \[MSE(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

- Mean Absolute Error

 \[MAE(D, f) = \frac{1}{n} \sum_{i=1}^{n} |y_i - f(x_i)| \]

- Mean Absolute Percentage Error

 \[MAPE(D, f) = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{y_i - f(x_i)}{y_i} \right| \]

Evaluation measures

Regression model $f: X \rightarrow Y$ where Y is real valued

- The error is calculated on the data D, say

 \[MSE(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

- This is an estimate of the error for f on the complete population

Important question:

- How close is our estimate to the true mean error?

To answer the question we need to resort to statistics:

- How confident we are the true error falls into interval around our estimate μ ?

Answer: with probability 0.95 the true error is in interval $[\mu^-, \mu^+]$
Evaluation

- **Central limit theorem:**
 Let random variables X_1, X_2, \ldots, X_n form a random sample from a distribution with mean μ and variance σ, then if the sample n is large, the distribution

 $$\sum_{i=1}^{n} X_i \approx N(n\mu, n\sigma^2) \quad \text{or} \quad \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$$

- **Statistical significance test**

- **Statistical tests for the mean**
 - H0 (null hypothesis) $E[X] = \mu^0$
 - H1 (alternative hypothesis) $E[X] \neq \mu^0$

- **Basic idea:**
 we use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 and check how probable it is that $E[X] = \mu^0$ holds

 If the probability that \bar{X} comes from the normal distribution with mean μ^0 is small – we reject the null hypothesis on that probability level
Statistical significance test

• Statistical tests for the mean
 – H0 (null hypothesis) \(E[X] = \mu^0 \)
 – H1 (alternative hypothesis) \(E[X] \neq \mu^0 \)

• Assume we know the standard deviation \(\sigma \) for the sample

\[
z = \frac{\bar{X} - \mu^0}{\sigma} \sqrt{n} \approx N(0,1) \quad \text{with} \quad P=0.95 \quad z \in [-1.96,1.96]
\]

Statistical significance test

• Statistical tests for the mean
 – H0 (null hypothesis) \(E[X] = \mu^0 \)

• Assume we know the standard deviation \(\sigma \)

\[
z = \frac{\bar{X} - \mu^0}{\sigma} \sqrt{n} \approx N(0,1) \quad \text{with} \quad P=0.95 \quad z \in [-1.96,1.96]
\]

• Z-test: If \(z \) is outside of the interval – reject the null hypothesis at significance level \(1-P \) if \(P=0.95 \) it is 0.05
Statistical significance test

- **Statistical tests for the mean**
 - H0 (null hypothesis) \(E[X] = \mu^0 \)
- **Problem:** we do not know the standard deviation \(\sigma \)
- **Solution:**
 \[
 t = \frac{\bar{X} - \mu^0}{s} \sqrt{n} \approx t \text{ - distribution} \quad \text{(Student distribution)}
 \]
 \[
 s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}
 \]
 - Estimate of the standard deviation
- **T-test:** If \(t \) is outside of the tabulated interval reject the null hypothesis at the corresponding significance level

Confidence interval

- Assume we have calculated the average error \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)
- There are many values of \(\mu^0 \) around it that are not rejected at some significance level (say 0.05)
- These values form a confidence interval around it

\[
\mu^- \quad \bar{X} \quad \mu^+ \quad \text{95% confidence interval}
\]

Confidence interval

- Significance level: 0.1

\[
\mu^- \quad \bar{X} \quad \mu^+ \quad \text{90% confidence interval}
\]
Statistical tests

The statistical tests lets us answer:

• The probability with which the true error falls into the interval around our estimate, say:

\[
MSE(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

• Compare two models M1 and M2 and determine based on the error on the data entries the probability with which model M1 is different (or better) than M2

\[
MSE(D, f_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2 \quad MSE(D, f_2) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_2(x_i))^2
\]

Trick:

\[
MSE(D, f_1) - MSE(D, f_2) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2 - \frac{1}{n} \sum_{i=1}^{n} (y_i - f_2(x_i))^2
= \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2 - (y_i - f_2(x_i))^2
\]

Evaluation measures

Similarly evaluations measures can be defined for the classification tasks

Assume binary classification:

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case</td>
<td>Control</td>
</tr>
<tr>
<td>Case</td>
<td>TP 0.3</td>
<td>FP 0.1</td>
</tr>
<tr>
<td>Control</td>
<td>FN 0.2</td>
<td>TN 0.4</td>
</tr>
</tbody>
</table>

Misclassification error:

\[
E = FP + FN
\]

Sensitivity:

\[
SN = \frac{TP}{TP + FN}
\]

Specificity:

\[
SP = \frac{TN}{TN + FP}
\]
Evaluation of models

- We started with a simple holdout method

Problem: the mean error results may be influenced by a lucky or an unlucky *training and testing* split especially for a small size D

Solution: try multiple train-test splits and average their results

Evaluation of models via random resampling

Other more complex methods

- Use multiple train/test sets
- Based on various random re-sampling schemes:
 - Random sub-sampling
 - Cross-validation
 - Bootstrap
Evaluation of models using random subsampling

- **Random sub-sampling**
 - Repeat a simple holdout method k times

Evaluation of models using k-fold cross-validation

Cross-validation (k-fold)

- Divide data into k disjoint groups, test on k-th group/train on the rest
- Typically 10-fold cross-validation
- Leave one out cross-validation ($k = \text{size of the data D}$)
Evaluation of models using bootstrap

Bootstrap

- The training set of size $N = \text{size of the data } D$
- Sampling with the replacement

```plaintext
Data

Generate the training set of size $N$ with replacement, the rest goes to the test set

Train → Test

Learning → Classify/Evaluate

Average Stats
```