Designing a learning system

Homework assignment

Homework assignment 1 will be out today
Two parts: Report + Programs

Submission:
• via Courseweb
• Report (submit in pdf)
• Programs (submit using a zip or tar archive file)
• Deadline 11:00am on September 14, 2017 (prior to the lecture)

Rules:
• Strict deadline
• No collaboration policy, reports and programs must be done individually
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Application:
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs \(x \) using learned \(f(x) \)
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Application
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs using learned \(ax + b \)

Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Application
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs using learned \(ax + b \)
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g.
3. Choose the:
 - Squared error
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Application:
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs \(x \) using learned \(f(x) \)
Learning: first look

1. Data: \(D = \{ d_1, d_2, ..., d_n \} \)

2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)

3. Choose the objective function
 - Squared error: \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Application
 - Apply the learned model to new data

 - Looks straightforward, but there are problems ….

Learning: generalization error

We fit the model based on past examples observed in \(D \)

Training data: Data used to fit the parameters of the model

Training error:
\[
\text{Error}(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examples

True (generalization) error (over the whole population):
\[
E_{(x,y)}[(y - f(x))^2] \quad \text{Mean squared error}
\]

Training error tries to approximate the true error !!!

Does a good training error imply a good generalization error ?
Overfitting

- Assume we have a set of 10 points and we consider polynomial functions as our possible models.

Overfitting

- Fitting a linear function with the square error.
- Error is nonzero. Why?
Overfitting

• Fitting a linear function with the square error
• Error is nonzero: \(\text{Error}(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

Overfitting

Assume in addition to linear model: \(y = f(x) = ax + b \)
we consider also: \(y = f(x) = a_3x^3 + a_2x^2 + a_1x + b \)
Which model would give us a smaller error for the least squares fit?
Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

- Is it always good to minimize the error of the observed data?
Overfitting

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

- More important: How do we perform on the unseen data?
Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}[(y - f(x))^2] \]
- But it cannot be computed exactly
- **Sample mean only approximates the true mean**

- **Optimizing the training error can lead to the overfit**, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
- So how to assess the generalization error?
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize.
- **Sample mean only approximates it**
- **Two ways to assess the generalization error is:**
 - **Theoretical:** Law of Large numbers
 - statistical bounds on the difference between true and sample mean errors
 - **Practical:** Use a separate data set with \(m \) data samples to test the model
 - **(Average) test error**
 \[
 \frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2
 \]

Testing of learning models

- **Simple holdout method**
 - Divide the data to the training and test data
 - Typically 2/3 training and 1/3 testing
Testing of models

Data set

Training set
Learn on the training set

Case
Control

Test set
Evaluate on the test set

Evaluation measures

Regression:
- Squared error
- Absolute error
- Mean absolute percentage error

Classification:

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Actual</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>TP 0.3</td>
<td>FP 0.1</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>FN 0.2</td>
<td>TN 0.4</td>
<td></td>
</tr>
</tbody>
</table>

Misclassification error:

\[E = FP + FN \]

Sensitivity:

\[SN = \frac{TP}{TP + FN} \]

Specificity:

\[SP = \frac{TN}{TN + FP} \]
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Testing/validation:
 - Evaluate on the test data
6. Application
 - Apply the learned model to new data \(f(x) \)
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)

3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Testing/validation:
 - Evaluate on the test data

6. Application
 - Apply the learned model to new data \(f(x) \)

Steps taken when designing an ML system

- Data
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Add some complexity

Data cleaning/preprocessing

Feature selection/dimensionality reduction

Model selection

Choice of Error function

Learning/optimization

Evaluation

Application

Designing an ML solution

Data cleaning/preprocessing

Feature selection/dimensionality reduction

Model selection

Choice of Error function

Learning/optimization

Evaluation

Application
Designing an ML solution

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Data source and data biases

- **Understand the data source**
- **Understand the data your models will be applied to**
- **Watch out for data biases:**
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased

- **Results (conclusions) derived for a biased dataset do not hold in general !!!**
Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:
- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:
- Would you trust the model?
- Are there any biases in the data?

Steps taken when designing an ML system

Data
Data cleaning/preprocessing
Feature selection/dimensionality reduction
Model selection
Choice of Error function
Learning/optimization
Evaluation
Application
Data cleaning and preprocessing

Data you receive may not be perfect:
- Cleaning
- Preprocessing (conversions)

Cleaning:
- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:
- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

Data preprocessing

- **Renaming** (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

 High \rightarrow 2
 Normal \rightarrow 1
 Low \rightarrow 0
 True \rightarrow 2
 False \rightarrow 1
 Unknown \rightarrow 0
 Red \rightarrow 2
 Blue \rightarrow 1
 Green \rightarrow 0

- **Rescaling (normalization):** continuous values transformed to some range, typically $[-1, 1]$ or $[0,1]$.
Data preprocessing

- **Discretizations (binning):** continuous values to a finite set of discrete values

- **Example:**

```
      50  100  150  200
Group 1  Group 2  Group 3
```

- **Another Example:**

```
    +---+---+---+
    |   |   |   |
    +---+---+---+
    |   |   |   |
    +---+---+---+
```

Data preprocessing

- **Abstraction:** merge together categorical values

- **Aggregation:** summary or aggregation operations, such as minimum value, maximum value, average etc.

- **New attributes:**
 - example: obesity-factor = weight/height