Ensemble methods

We know how to build different classification or regression models from data

• **Question:**
 – Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?

• **Answer:** yes

• There are different ways of how to do it…
Ensemble methods

• **Question:**
 – Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
 – There are different ways of how to do it…

• Assume you have models M1, M2, … Mk
• **Approach 1:** use the different models (classifiers, regressors) to cover the different parts of the input (x) space
• **Approach 2:** use the models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 1

• Recall the decision tree:
 – *It partitions the input space to regions*
 – *It picks the class independently in every region*
Approach 1

• Recall the decision tree:
 – It partitions the input space to regions
 – picks the class independently

• What if we define a more general partitions of the input space and learn a model specific to these partitions

<table>
<thead>
<tr>
<th>x_2</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Approach 1

Define a more general partitions of the input space and learn a model specific to these partitions

Example:
• 2 linear functions covering two regions of the input space

Mixture of expert model:
• Expert = learner (model)
• Different input regions covered with different learners
• A “soft” switching between learners
Approach 2

- **Approach 2**: use multiple models (classifiers, regressors) that cover the complete input (x) space and combines their outputs

- **Committee machines**:
 - Combine predictions of all models to produce the output
 - **Regression**: averaging
 - **Classification**: a majority vote
 - **Goal**: Improve the accuracy of the ‘base’ model

- **Methods**:
 - **Bagging (the same base models)**
 - **Boosting (the same base models)**
 - Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

- **Given**:
 - Training set of \(N \) examples
 - A base learning model (e.g. decision tree, neural network, …)

- **Method**:
 - Train multiple (k) base models on slightly different datasets
 - Predict (test) by averaging the results of k models

- **Goal**:
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
Bagging algorithm

• **Training**
 • For each model M₁, M₂, … Mk
 • Randomly sample with replacement N samples from the training set (bootstrap)
 • Train a chosen “base model” (e.g. neural network, decision tree) on the samples

• **Test**
 – For each test example
 • Run all base models M₁, M₂, … Mk
 • Predict by combining results of all T trained models:
 – **Regression**: averaging
 – **Classification**: a majority vote
Class decision via majority voting

Test examples

- model_1
- model_2
- model_3
- Final

Class “yes”
Class “no”

Analysis of Bagging

- Expected error = Bias + Variance
 - Expected error is the expected discrepancy between the estimated and true function
 \[E \left[(\hat{f}(X) - E[f(X)])^2 \right] \]
 - Bias is squared discrepancy between averaged estimated and true function
 \((E[\hat{f}(X)] - E[f(X)])^2 \)
 - Variance is expected divergence of the estimated function vs. its average value
 \(E[\hat{f}(X) - E[\hat{f}(X)]^2] \)
When Bagging works?
Under-fitting and over-fitting

• **Under-fitting:**
 – High bias (models are not accurate)
 – Small variance (smaller influence of examples in the training set)

• **Over-fitting:**
 – Small bias (models flexible enough to fit well to training data)
 – Large variance (models depend very much on the training set)

Averaging decreases variance

• **Example**
 – Assume we measure a random variable x with a $N(\mu,\sigma^2)$ distribution
 – If only one measurement x_1 is done,
 • The expected mean of the measurement is μ
 • Variance is $\text{Var}(x_1)=\sigma^2$
 – If a random variable x is measured K times ($x_1,x_2,…,x_k$) and the value is estimated as: $(x_1+x_2+…+x_k)/K$,
 • Mean of the estimate is still μ
 • But, variance is smaller:
 – $[\text{Var}(x_1)+…\text{Var}(x_k)]/K^2=K\sigma^2/K^2=\sigma^2/K$
 • Observe: **Bagging is a kind of averaging!**
When Bagging works

- **Main property of Bagging** (proof omitted)
 - Bagging **decreases variance** of the base model without changing the bias!!!
 - Why? averaging!
- **Bagging typically helps**
 - When applied with an **over-fitted base model**
 - High dependency on actual training data
 - Example: fully grown decision trees
- **It does not help much**
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- **Bagging**
 - Multiple models covering the complete space, a learner is not biased to any region
 - Learners are learned independently
- **Boosting**
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent
Boosting. Theoretical foundations.

• PAC: Probably Approximately Correct framework
 – \((\varepsilon, \delta)\) solution
• PAC learning:
 – Learning with pre-specified error \(\varepsilon\) and confidence \(\delta\) parameters
 – the probability that the misclassification error is larger than \(\varepsilon\) is smaller than \(\delta\)
 \[
 P(ME(c) > \varepsilon) \leq \delta
 \]
• Accuracy \((1-\varepsilon)\): Percent of correctly classified samples in test
• Confidence \((1-\delta)\): The probability that in one experiment some accuracy will be achieved
 \[
 P(Acc(c) > 1 - \varepsilon) > (1 - \delta)
 \]

PAC Learnability

Strong (PAC) learnability:
• There exists a learning algorithm that efficiently learns the classification with a pre-specified accuracy and confidence

Strong (PAC) learner: A learning algorithm \(P\) that
• Given an arbitrary:
 – classification error \(\varepsilon\) (< 1/2), and
 – confidence \(\delta\) (<1/2)
 or in other words:
 • classification accuracy > (1-\varepsilon)
 • confidence probability > (1- \(\delta\))
• Outputs a classifier that satisfies this parameters
• And runs in time polynomial in \(1/ \delta, 1/\varepsilon\)
 – Implies: number of samples \(N\) is polynomial in \(1/ \delta, 1/\varepsilon\)
Weak Learner

Weak learner:
- A learning algorithm (learner) W that gives:
 - a classification accuracy $> 1 - \varepsilon_o$
 - with probability $> 1 - \delta_o$
- For some fixed and uncontrollable
 - error $\varepsilon_o (<1/2)$
 - confidence $\delta_o (<1/2)$

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess ($> 50\%$) with confidence higher than 50% on any data distribution
- Question:
 - Is the problem also strong PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary ($\varepsilon-\delta$) accuracy?
- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?
Weak=Strong learnability!!!

- **Proof due to R. Schapire**
 An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together
- Weak learner W with confidence δ_o and maximal error ε_o
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy
 by training different weak learners on slightly different datasets

Boosting accuracy

Training

Distribution samples

Learners

- H_1
- H_2
- H_3

- **Correct classification**
- **Wrong classification**
- H_1 and H_2 classify differently
Boosting accuracy

- **Training**
 - Sample randomly from the distribution of examples
 - Train hypothesis H_1 on the sample
 - Evaluate accuracy of H_1 on the distribution
 - Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2.
 - Train H_3 on samples from the distribution where H_1 and H_2 classify differently

- **Test**
 - For each example, decide according to the majority vote of H_1, H_2 and H_3

Theorem

- If each hypothesis has an error $< \epsilon_0$, the final ‘voting’ classifier has error $< g(\epsilon_0) = 3 \epsilon_0^2 - 2 \epsilon_0^3$
- Accuracy improved !!!!!
- Apply recursively to get to the target accuracy !!!!
Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- **The key result:** we can improve both the accuracy and confidence

- **Problems with the theoretical algorithm**
 - A good (better than 50%) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set

- **Solution to the sampling problem:**
 - Boosting by sampling
 - *AdaBoost* algorithm and variants

AdaBoost

- **AdaBoost:** boosting by sampling

- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)

- **Regression** (Drucker; 1997)
 - AdaBoostR
AdaBoost training

Training data

Distribution D_1

Uniform distribution D_1 training examples

$P(\text{example } i) = 1/N$

AdaBoost training

Training data

Distribution D_1

Learn

Model 1

Sample randomly according to D_1
And train the Model 1
AdaBoost training.

Training data → Distribution \(D_1 \) → Learn \(\text{Model 1} \) → Test \(\text{Errors 1} \)

Test the Model 1 and calculate errors

AdaBoost training

Training data → Distribution \(D_1 \) → Learn \(\text{Model 1} \) → Test \(\text{Errors 1} \) → Distribution \(D_2 \)

Use errors to recalculate the new distribution on data
More probability to pick examples with errors
AdaBoost training

Training data → D_1 → Model 1 → Errors 1 → D_2 → Model 2 → Errors 2 → ...

D_T → Model T → Errors T

AdaBoost

• **Given:**
 - A training set of N examples (attributes + class label pairs)
 - A “base” learning model (e.g. a decision tree, a neural network)

• **Training stage:**
 - Train a sequence of T “base” models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the $(t-1)\text{th}$ step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

• **Application (classification) stage:**
 - Classify according to the weighted majority of classifiers
AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t

 $D_t(i) - a$ probability that example i from the original training dataset is selected

 $D_1(i) = 1 / N$ for the first step (t=1)

- Take K samples from the training set according to D_t

- Train a classifier h_t on the samples

- Calculate the error ε_t of h_t:

 $\varepsilon_t = \sum_{i : h_t(x_i) \neq y_i} D_t(i)$

- Classifier weight: $\beta_t = \frac{\varepsilon_t}{1 - \varepsilon_t}$

- New sampling distribution

 $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t, & h_t(x_i) = y_i \\ 1, & \text{otherwise} \end{cases}$

AdaBoost. Sampling Probabilities

Example:

- Nonlinearly separable binary classification
- NN as weak learners

17
AdaBoost: Sampling Probabilities

AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set
 \[
 w_t = \log\left(\frac{1}{\beta_t}\right) = \log\left(\frac{(1 - \epsilon_t)}{\epsilon_t}\right)
 \]
 \[
 \beta_t = \frac{\epsilon_t}{(1 - \epsilon_t)}
 \]
- **Classification:**
 For every class $j=0,1$
 - Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 - Output class that correspond to the maximal sum of weights (weighted majority)
 \[
 h_{final}(x) = \arg \max_j \sum_{\forall h_t(x) = j} w_t
 \]
Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

- Weighted majority “yes”
 \[0.7 - 0.5 = +0.2\]
- The final choice is “yes” + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples
 - **Boosting can:**
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- **Train versus test errors performance:**
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers
Boosting. Error performances

Model Averaging

- An alternative to combine multiple models
- can be used for supervised and unsupervised frameworks
- For example:
 - Likelihood of the data can be expressed by averaging over the multiple models
 \[P(D) = \sum_{i=1}^{N} P(D \mid M = m_i) P(M = m_i) \]
 - Prediction:
 \[P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i) P(M = m_i) \]