Clustering

K-means clustering algorithm

- an iterative clustering algorithm
- works in the d-dimensional R space representing x

K-Means clustering algorithm:

Initialize randomly k values of means (centers)

Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means
K-means: example

• Initialize the cluster centers

K-means: example

• Calculate the distances of each point to all centers
K-means: example

• For each example pick the best (closest) center

K-means: example

• Recalculate the new mean from all data examples assigned to the same cluster center
K-means: example

• Shift the cluster center to the new mean

K-means: example

• Shift the cluster centers to the new calculated means
K-means: example

- And repeat the iteration …
- Till no change in the centers

K-means clustering algorithm

K-Means algorithm:

- **Initialize** randomly k values of means (centers)
- **Repeat**
 - Partition the data according to the current set of means (using the similarity measure)
 - Move the means to the center of the data in the current partition
- **Until** no change in the means

Properties:

- Minimizes the sum of squared center-point distances for all clusters
 \[
 \min_S \sum_{i=1}^{k} \sum_{x_j \in S_i} \| x_j - u_i \|^2 \\
 u_i = \text{center of cluster } S_i
 \]
K-means clustering algorithm

- **Properties:**
 - *converges* to centers minimizing the sum of squared center-point distances (still local optima)
 - The result is **sensitive** to the initial means’ values

- **Advantages:**
 - Simplicity
 - Generality – can work for more than one distance measure

- **Drawbacks:**
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Probabilistic (EM-based) algorithms

- **Latent variable models**
 Examples: Naïve Bayes with hidden class
 Mixture of Gaussians

- **Partitioning:**
 - the data point belongs to the class with the highest posterior

- **Advantages:**
 - Good performance on overlapping regions
 - Robustness to outliers
 - Data attributes can have different types of values

- **Drawbacks:**
 - EM is computationally expensive and can take time to converge
 - Density model should be given in advance
Hierarchical clustering

Uses an arbitrary similarity/dissimilarity measure

Typical similarity measures $d(a,b)$:

- **Pure real-valued data-points:**
 - Euclidean, Manhattan, Minkowski distances

- **Pure categorical data:**
 - Hamming distance, Number of matching values

Combination of real-valued and categorical attributes

- Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical clustering

- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters

- **Divisive approach:**
 - Splits clusters in top-down fashion, starting from one complete cluster
Hierarchical (agglomerative) clustering

Approach:
• **Compute dissimilarity matrix for all pairs of points**
 – uses standard or other distance measures
• **Construct clusters greedily:**
 – **Agglomerative approach**
 • Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
• **Stop the greedy construction** when some criterion is satisfied
 – E.g. fixed number of clusters
Hierarchical (agglomerative) clustering

Approach:
• Compute dissimilarity matrix for all pairs of points
 – uses standard or other distance measures

N points, $O(N^2)$ pairs, $O(N^2)$ distances

Hierarchical (agglomerative) clustering

Approach:
• Compute dissimilarity matrix for all pairs of points
 – uses standard or other distance measures
• Construct clusters greedily:
 – Agglomerative approach
 • Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
Hierarchical (agglomerative) clustering

Approach:
• **Compute dissimilarity matrix for all pairs of points**
 – uses standard or other distance measures
• **Construct clusters greedily:**
 – **Agglomerative approach**
 • Merge pair of clusters in a bottom-up fashion, starting from singleton clusters

![Diagram of clustering process](image-url)
Hierarchical (agglomerative) clustering

Approach:
• Compute dissimilarity matrix for all pairs of points
 – uses standard or other distance measures
• Construct clusters greedily:
 – Agglomerative approach
 • Merge pair of clusters in a bottom-up fashion, starting from singleton clusters

Cluster merging

• Agglomerative approach
 – Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 – Merge clusters based on cluster (or linkage) distances. Defined in terms of point distances. Examples:

\[
 d_{\text{min}}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)
\]
Cluster merging

- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on **cluster (or linkage) distances**.
 Defined in terms of point distances. **Examples:**
 Max distance
 \[
 d_{\text{max}}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)
 \]

Cluster merging

- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on **cluster (or linkage) distances**.
 Defined in terms of point distances. **Examples:**
 Mean distance
 \[
 d_{\text{mean}}(C_i, C_j) = d\left(\frac{1}{|C_i|} \sum_i p_i; \frac{1}{|C_j|} \sum_j q_j\right)
 \]
Hierarchical (agglomerative) clustering

Approach:
- **Compute dissimilarity matrix for all pairs of points**
 - uses standard or other distance measures
- **Construct clusters greedily:**
 - **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - **Stop the greedy construction** when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:
- **Compute dissimilarity matrix for all pairs of points**
 - uses standard or other distance measures
- **Construct clusters greedily:**
 - **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - **Divisive approach:**
 - Splits clusters in top-down fashion, starting from one complete cluster
- **Stop the greedy construction** when some criterion is satisfied
 - E.g. fixed number of clusters
Hierarchical clustering example

- Dendogram
Hierarchical clustering

- **Advantage:**
 - Smaller computational cost; avoids scanning all possible clusterings

- **Disadvantage:**
 - Greedy choice fixes the order in which clusters are merged; cannot be repaired

- **Partial solution:**
 - combine hierarchical clustering with iterative algorithms like k-means algorithm

Other clustering methods

- **Spectral clustering**
 - Uses similarity matrix and its spectral decomposition (eigenvalues and eigenvectors)

- **Multidimensional scaling**
 - techniques often used in data visualization for exploring similarities or dissimilarities in data.
Ensemble methods

We know how to build different classification or regression models from data

- **Question:**
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?

- **Answer:** yes
- There are different ways of how to do it…
Ensemble methods

• **Question:**
 – Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
• There are different ways of how to do it…

• Assume you have models M1, M2, … Mk
• **Approach 1:** use the different models (classifiers, regressors) to cover the different parts of the input (x) space
• **Approach 2:** use the models (classifiers, regressors) that cover the complete input (x) space

Approach 1

• Recall the decision tree:
 – *It partitions the input space to regions*
 – *It classifies independently in every region*
Approach 1

• Recall the decision tree:
 – It partitions the input space to regions
 – It classifies independently in every region

• What if we define a more general partitions of the input space and learn a model specific to these partitions

![Diagram](chart.png)

Approach 1

• Approach 1: define a more general partitions of the input space and learn a model specific to these partitions

Example:
• Mixture of expert model:
 – Different input regions covered with different learners
 – A “soft” switching between learners

• Mixture of experts
 Expert = learner

![Diagram](chart.png)
Approach 2

- **Approach 2**: use multiple models (classifiers, regressors) that cover the complete input \((x)\) space
- **Committee machines**:
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - **Goal**: Improve the accuracy of the ‘base’ model

- **Methods**:
 - **Bagging**
 - **Boosting**
 - Stacking (not covered)

Bagging (Bootstrap Aggregating)

- **Given**:
 - Training set of \(N\) examples
 - A class of learning models (e.g. decision trees, neural networks, …)
- **Method**:
 - Train multiple \((k)\) models on slightly different datasets
 - Predict (test) by averaging the results of \(k\) models
- **Goal**:
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
Bagging algorithm

- **Training**
 - For each model M1, M2, … Mk
 - Randomly sample with replacement N samples from the training set
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

- **Test**
 - For each test example
 - Run all base models M1, M2, … Mk
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - **Classification:** a majority vote

Class decision via majority voting

Test examples

- **model₁**
- **model₂**
- **model₃**
- **Final**

- **Class “yes”**
- **Class “no”**