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Clustering

Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

• distribute data into k different groups such that data points 
similar to each other are in the same group 

• Similarity between data points is typically defined in terms 
of some distance metric (can be chosen)
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Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

• distribute data into k different groups such that data points 
similar to each other are in the same group 

• Similarity between data points is typically defined in terms 
of some distance metric (can be chosen)
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Clustering example

Clustering could be applied to different types of data instances

Example: partition patients into groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 
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Clustering example

Clustering could be applied to different types of data instances

Example: partition patients into groups based on similarities

Key question: How to define similarity between instances?

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

Similarity and dissimilarity measures 

• Dissimilarity measure

– Numerical measure of how different two data objects are

– Often expressed in terms of a distance metric

- Example:  Euclidean: 

• Similarity measure

– Numerical measure of how alike two data objects are

– Examples: 

• Cosine similarity:

• Gaussian kernel: 
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Distance metrics 

Dissimilarity is often measured with the help of a distance 

metrics.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness:

Symmetry:

Identity:

Triangle inequality: 
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Distance metrics 

Assume 2 real-valued data-points:

a=(6, 4)

b=(4, 7)

What distance metric to use?

(6, 4)

(4, 7)

?

x1

x2
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Distance metrics 

Assume 2 real-valued data-points:

a=(6, 4)

b=(4, 7)

What distance metric to use?

(6, 4)

(4, 7)
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Distance metrics 

Assume 2 real-valued data-points:

a=(6, 4)

b=(4, 7)

What distance metric to use?

(6, 4)

(4, 7)
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Distance metrics 

Assume 2 real-valued data-points:

a=(6, 4)

b=(4, 7)

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional 

space
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Distance metrics 

Assume 2 real-valued data-points:

a=(6, 4)

b=(4, 7)

Manhattan distance:

works for an arbitrary k-dimensional space
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Distance measures 

Generalized distance metric:

semi-definite positive matrix 

is a matrix that weights attributes proportionally to their 

importance.  Different weights lead to a different distance 

metric. 

If             we get squared Euclidean  

(covariance matrix) – we get the Mahalanobis

distance that takes into account correlations among 

attributes

I

)()()( 12
baΓbaba,  Td

1





1

Distance measures 

Generalized distance metric:

Special case:             we get squared Euclidean

Example:    

I
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Distance measures 

Generalized distance metric:

Special case:             defines Mahalanobis distance

Example: Assume dimensions are independent in data    

Covariance matrix                  Inverse covariance

Contribution of each dimension to the squared Euclidean is 

normalized (rescalled) by the variance of that dimension
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Distance measures

Assume categorical  data where integers represent the 

different categories:

What distance metric to use?

0   1   1   0   0 

1   0   3   0   1

2   1   1   0   2

1   1   1   1   2

…
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Distance measures 

Assume categorical  data where integers represent the 

different categories:

What distance metric to use?

Hamming distance: The number of values that need to be 

changed to make them the same

0   1   1   0   0 

1   0   3   0   1

2   1   1   0   2

1   1   1   1   2

…

Distance measures. 

Assume pure binary values data:

One metric is the Hamming distance: The number of bits that 

need to be changed to make the entries the same

How about squared Euclidean? 

0   1   1   0   1 

1   0   1   0   1

0   1   1   0   1

1   1   1   1   1

…
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Distance measures. 

Assume pure binary values data:

One metric is the Hamming distance: The number of bits that 

need to be changed to make the entries the same

How about the squared Euclidean?

The same as Hamming distance. 

0   1   1   0   1 

1   0   1   0   1

0   1   1   0   1

1   1   1   1   1

…
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Distance measures

Combination of real-valued and categorical attributes

What distance metric to use?

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 
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Distance measures 

Combination of real-valued and categorical attributes

What distance metric to use? Solutions:  

• A weighted sum approach: e.g. a mix of Euclidian and 
Hamming distances for subsets of attributes

• Generalized distance metric (weighted combination, use 
one-hot representation  of categories)

More complex solutions:  tensors and decompositions

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

Distance metrics and similarity 

• Dissimilarity/distance measure

• Similarity measure

– Numerical measure of how alike two data objects are

– Do not have to satisfy the properties like the ones for the 

distance metric 

– Examples:

• Cosine similarity:

• Gaussian kernel: 
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Clustering

Clustering is useful for:

• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

• Data reduction: Replaces many data-points with a point 

representing the group mean  

Challenges:

• How to measure similarity (problem/data specific)?

• How to choose the number of groups?

– Many clustering algorithms require us to provide the 

number of groups ahead of time

Clustering algorithms

Algorithms covered: 

• K-means algorithm 

• Hierarchical methods

– Agglomerative

– Divisive
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K-means clustering algorithm

• An iterative clustering algorithm

• works in the d-dimensional R space representing x 

K-Means clustering algorithm:

Initialize randomly k values of means (centers)

Repeat

– Partition the data according to the current set of means 
(using the similarity measure)

– Move the means to the center of the data in the current 
partition

Until no change in the means

K-means: example

• Initialize the cluster centers
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K-means: example

• Calculate the distances of each point to all centers
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K-means: example

• For each example pick the best (closest) center
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K-means: example

• Recalculate the new mean from all data examples assigned 

to the same cluster center
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K-means: example

• Shift the cluster center to the new mean
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K-means: example

• Shift the cluster centers to the new calculated means
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K-means: example

• And repeat the iteration …

• Till no change in the centers
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K-means clustering algorithm

K-Means algorithm:

Initialize randomly k values of means (centers)

Repeat

– Partition the data according to the current set of means 
(using the similarity measure)

– Move the means to the center of the data in the current 
partition

Until no change in the means

Properties: 

• Minimizes the sum of squared center-point distances for all 
clusters 
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K-means clustering algorithm

• Properties:

– converges to centers minimizing the sum of squared 
center-point distances (still local optima) 

– The result is sensitive to the initial means’ values

• Advantages:

– Simplicity

– Generality – can work for more than one distance measure

• Drawbacks:

– Can perform poorly with overlapping regions

– Lack of robustness to outliers

– Good for attributes (features) with continuous values

• Allows us to compute cluster means

• k-medoid algorithm used for discrete data
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Hierarchical clustering 

• Builds a hierarchy of clusters 

(groups) with singleton groups 

at the bottom and ‘all points’ group 

on the top

Uses many different dissimilarity measures

• Pure real-valued data-points:

– Euclidean, Manhattan, Minkowski Pure categorical data:

– Hamming distance,

– Combination of real-valued and categorical attributes

– Weighted, or Euclidean

Hierarchical clustering 

Two versions of the hierarchical 

clustering

• Agglomerative approach

– Merge pair of clusters in a 

bottom-up fashion, starting 

from singleton clusters

• Divisive approach: 

– Splits clusters in top-down 

fashion, starting from one 

complete cluster
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Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters

• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters

Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
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Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

N datapoints, O(N2) pairs, O(N2) distances

Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
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Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters

Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
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Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters

Cluster merging

• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 

singleton clusters

– Merge clusters based on cluster (or linkage) distances. 

Defined in terms of point distances. Examples:
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Min distance
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Cluster merging

• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 

singleton clusters

– Merge clusters based on cluster (or linkage) distances. 

Defined in terms of point distances. Examples:

),(max),(
,

max qpdCCd
ji CqCp

ji


Max distance

Cluster merging

• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 

singleton clusters

– Merge clusters based on cluster (or linkage) distances. 

Defined in terms of point distances. Examples:
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Hierarchical (agglomerative) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters

• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters

Hierarchical (divisive) clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard distance or other dissimilarity measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters

– Divisive approach: 

• Splits clusters in top-down fashion, starting from one 

complete cluster

• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters



25

Hierarchical clustering example
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Hierarchical clustering example
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• Dendogram



26

Hierarchical clustering

• Advantage:

– Smaller computational cost; avoids scanning all possible 

clusters

• Disadvantage:

– Greedy choice fixes the order in which clusters are merged; 

cannot be repaired

• Partial solution:

• combine hierarchical clustering with iterative algorithms 

like k-means algorithm


