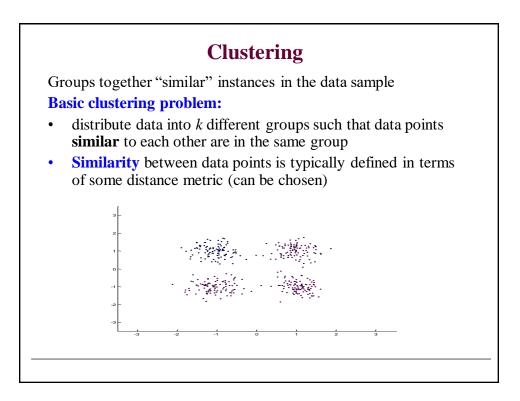
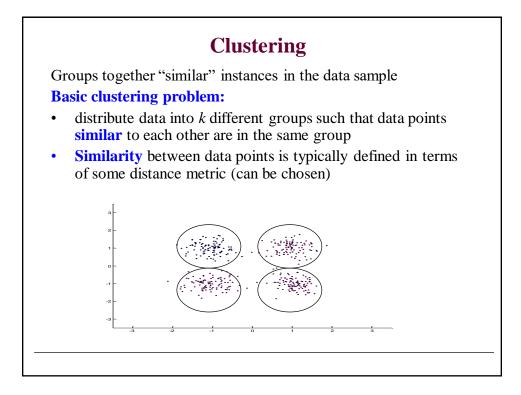
CS 1675 Introduction to Machine Learning Lecture 21

Clustering

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square





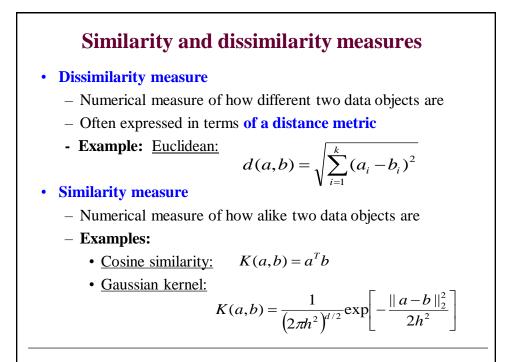
C.	uld be a	pplied	• 1	es of data instances sed on similarities
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

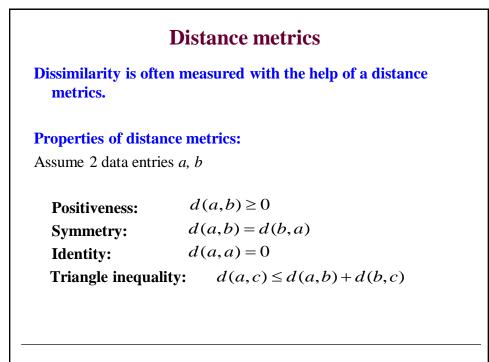
Clustering example

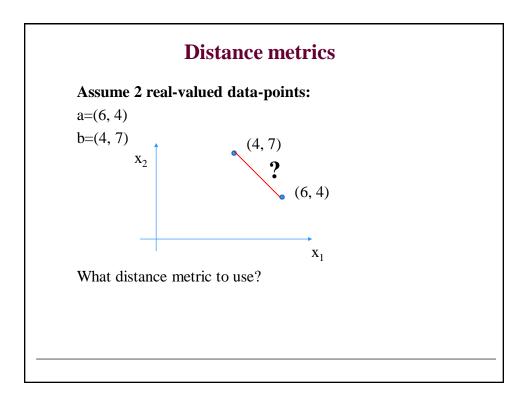
Clustering could be applied to different types of data instances **Example:** partition patients into groups based on similarities

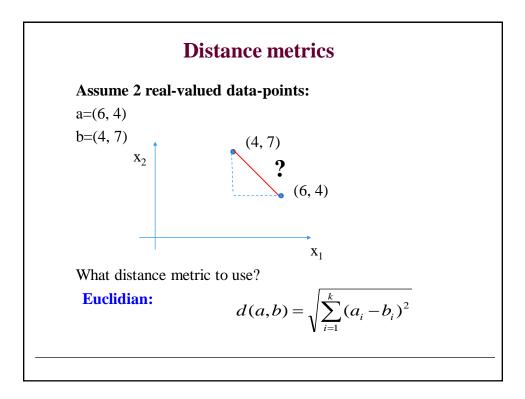
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

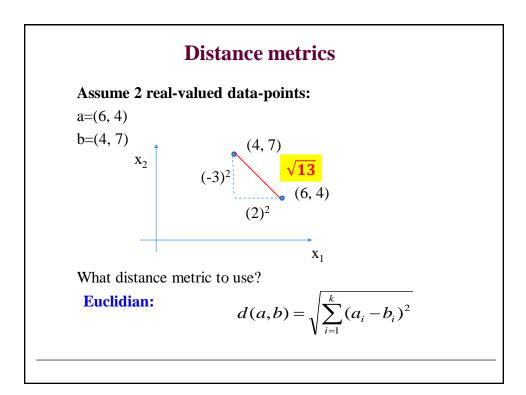
Key question: How to define similarity between instances?

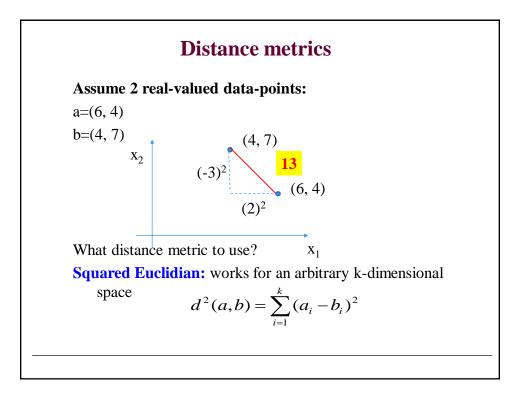


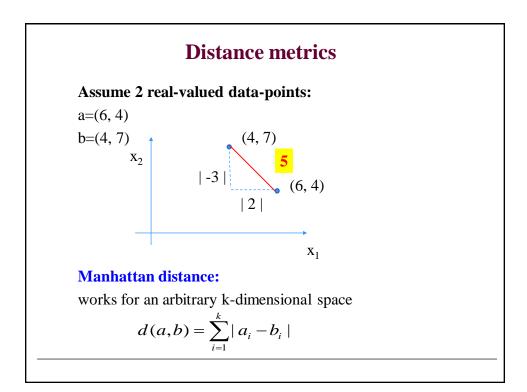


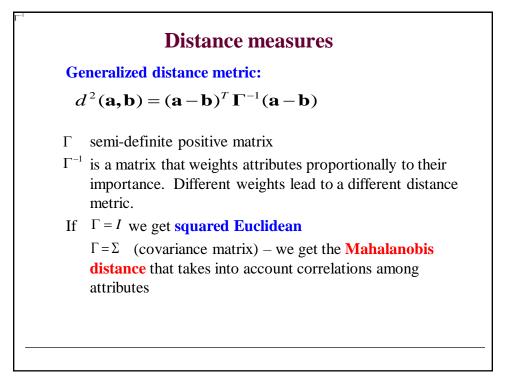












	Distan	ce measures
Generalized dist	ance metri	с:
$d^2(\mathbf{a},\mathbf{b}) =$	$=(\mathbf{a}-\mathbf{b})^{T}$	$\Gamma^{-1}(\mathbf{a}-\mathbf{b})$
Special case: Г Example:	= I we get	squared Euclidean
$\mathbf{a} = \begin{bmatrix} 6\\4 \end{bmatrix}$	$\mathbf{b} = \begin{bmatrix} 4\\7 \end{bmatrix}$	$\Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Gamma^{-1}$
$d^2(\mathbf{a},\mathbf{b}) = [2$	-3] $\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2^2 + (-3)^2 = 13$

Distance measures

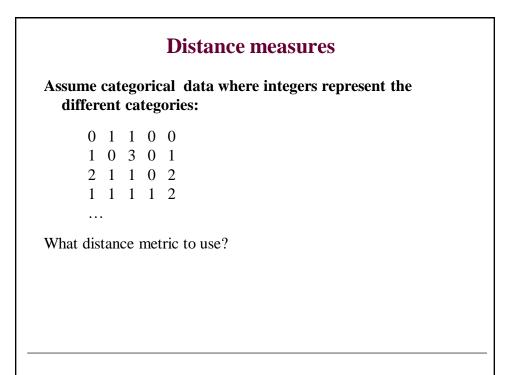
Generalized distance metric:

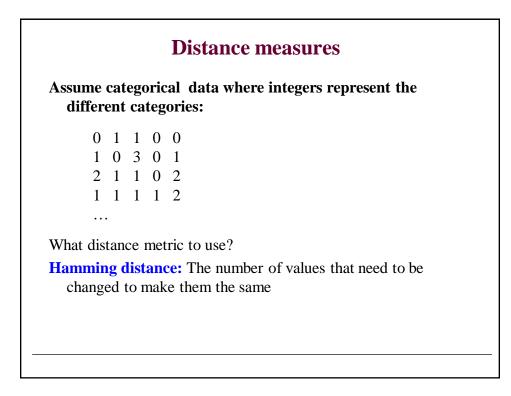
 $d^{2}(\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \Gamma^{-1}(\mathbf{a} - \mathbf{b})$ Special case: $\Gamma = \Sigma$ defines Mahalanobis distance

Example: Assume dimensions are independent in data **Covariance matrix Inverse covariance**

$$\sum = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \qquad \sum ^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{pmatrix}$$
$$d^2(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \frac{2^2}{\sigma_1^2} + \frac{(-3)^2}{\sigma_2^2}$$

Contribution of each dimension to the squared Euclidean is normalized (rescalled) by the variance of that dimension





Distance measures.
Assume pure binary values data:
0 1 1 0 1
$1 \ 0 \ 1 \ 0 \ 1$
0 1 1 0 1
1 1 1 1 1
One metric is the Hamming distance: The number of bits that need to be changed to make the entries the same
How about squared Euclidean?
$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$

Distance measures.

Assume pure binary values data:

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

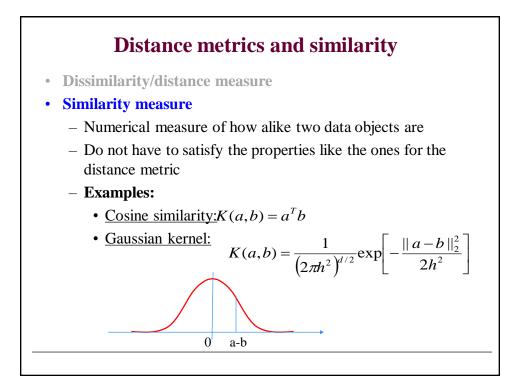
How about the squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

The same as Hamming distance.

Patient #	Age	Sex	Heart Rate	Blood pressure .
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

1 85	125/80
1 87	130/85
80	126/86
90	130/90
1 84	135/85
	A 87 8 80 8 90



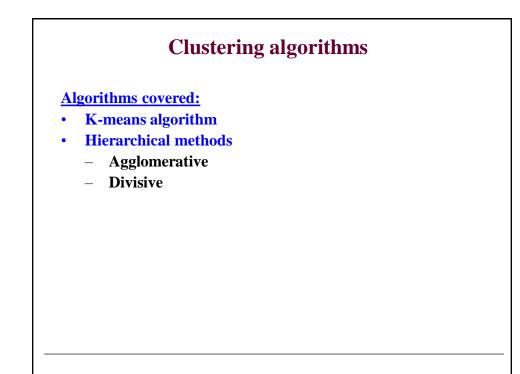
Clustering

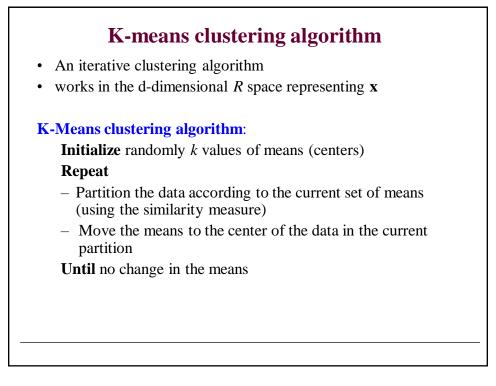
Clustering is useful for:

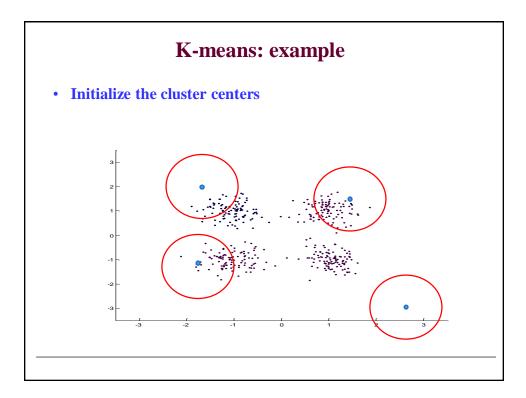
- Similarity/Dissimilarity analysis Analyze what data points in the sample are close to each other
- **Dimensionality reduction** High dimensional data replaced with a group (cluster) label
- **Data reduction:** Replaces many data-points with a point representing the group mean

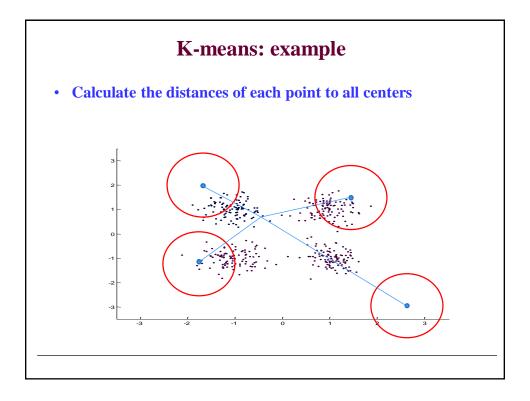
Challenges:

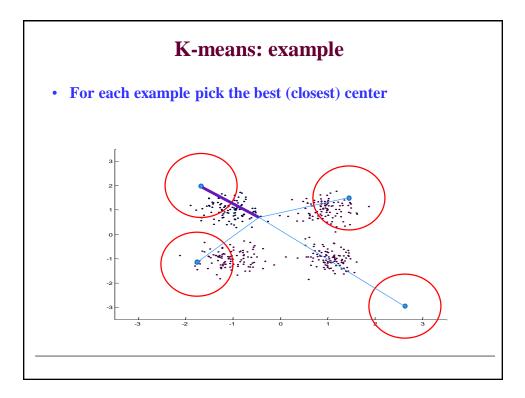
- How to measure similarity (problem/data specific)?
- How to choose the number of groups?
 - Many clustering algorithms require us to provide the number of groups ahead of time

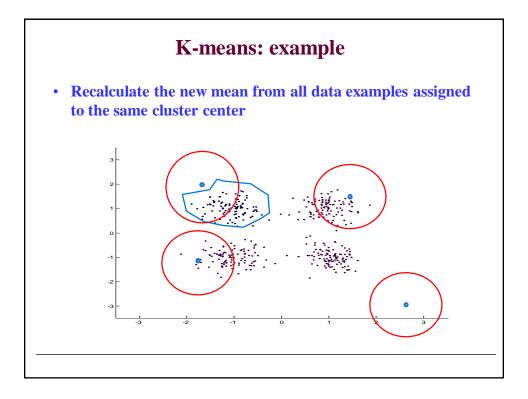


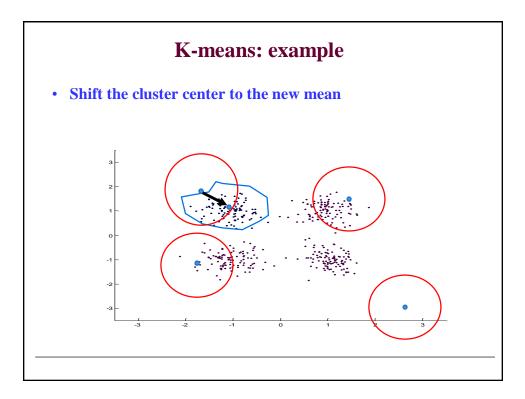


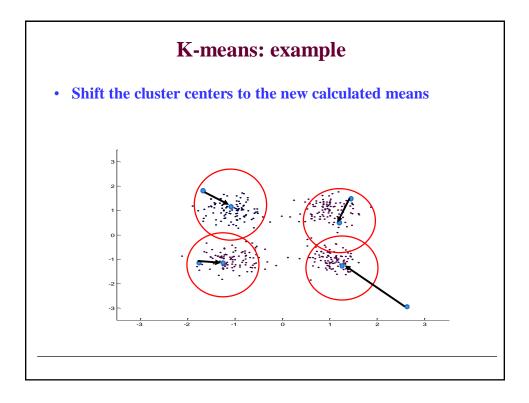


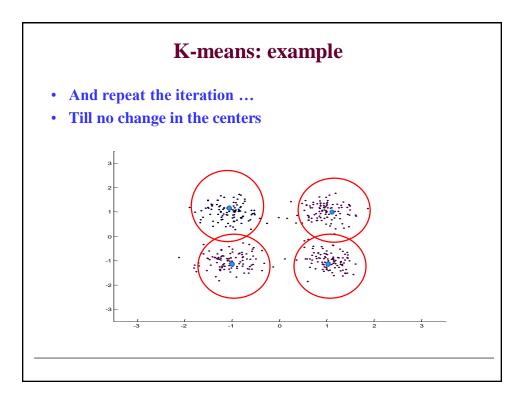


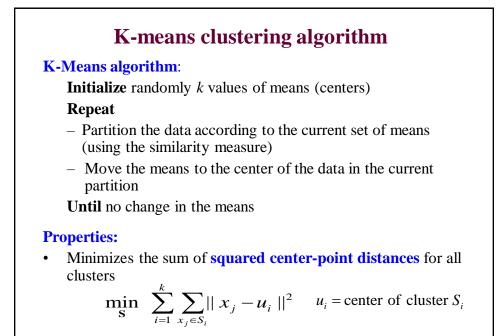




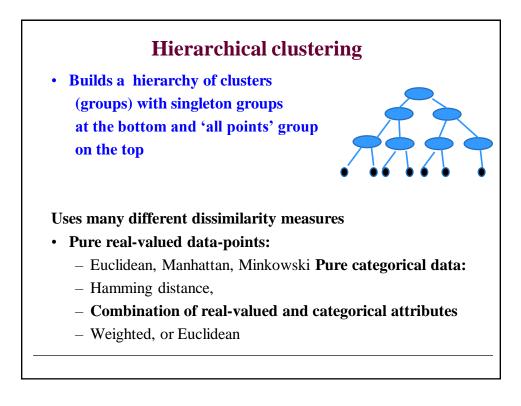


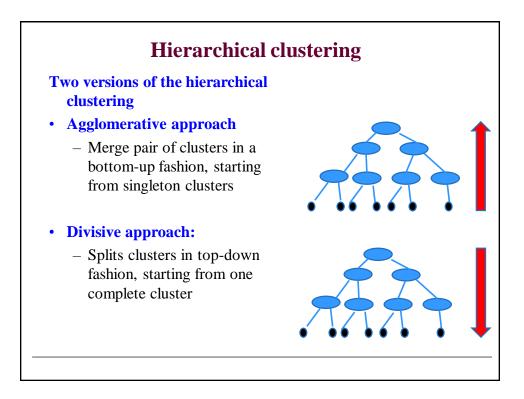


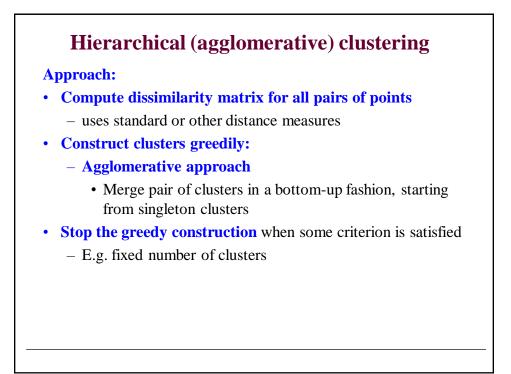


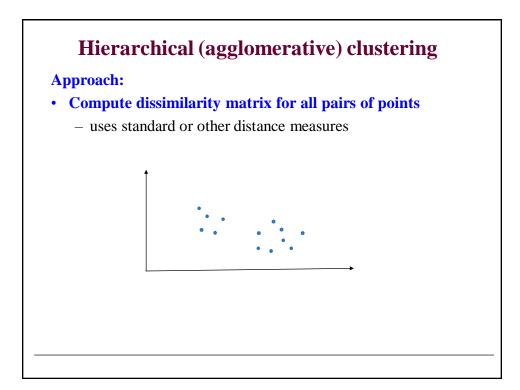


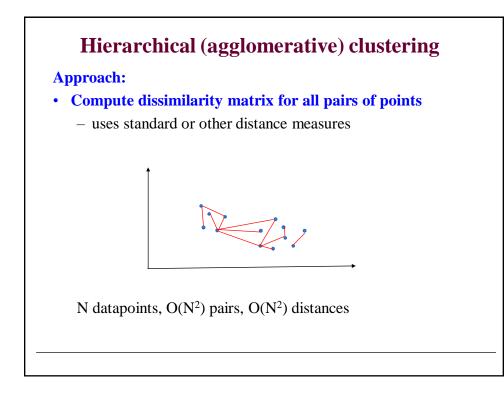
•	Properties:
	 converges to centers minimizing the sum of squared center-point distances (still local optima)
	- The result is sensitive to the initial means' values
•	Advantages:
	– Simplicity
	- Generality - can work for more than one distance measure
•	Drawbacks:
	 Can perform poorly with overlapping regions
	 Lack of robustness to outliers
	- Good for attributes (features) with continuous values
	• Allows us to compute cluster means
	• k-medoid algorithm used for discrete data

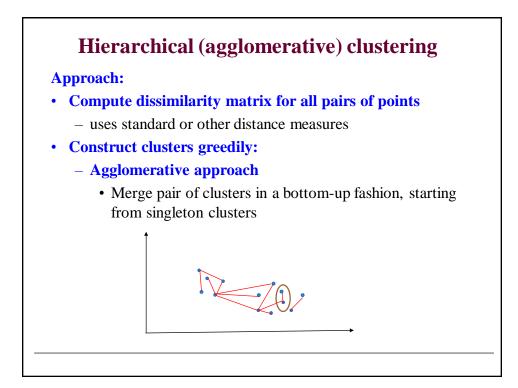


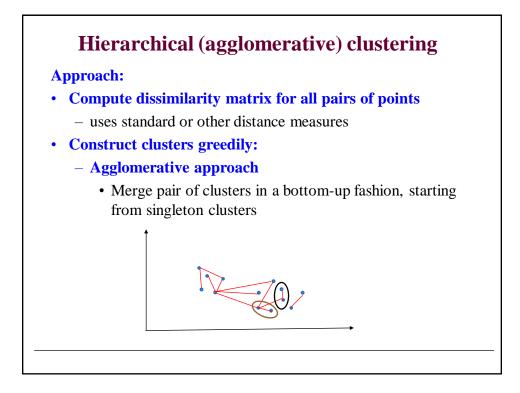


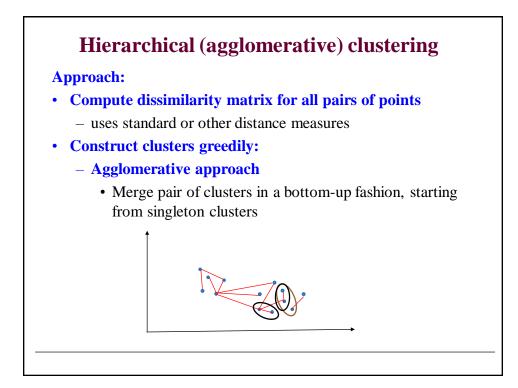


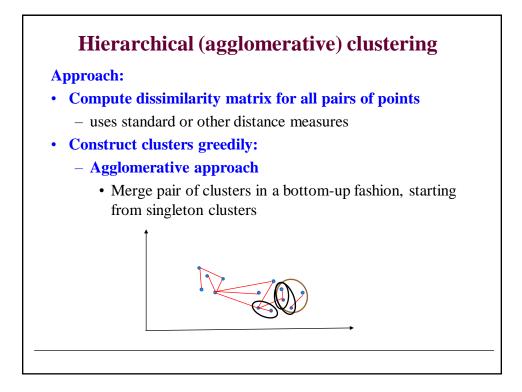


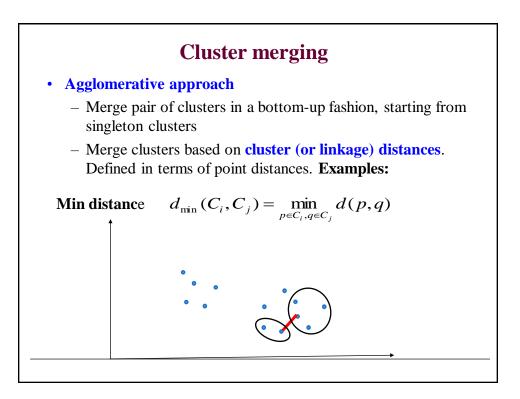


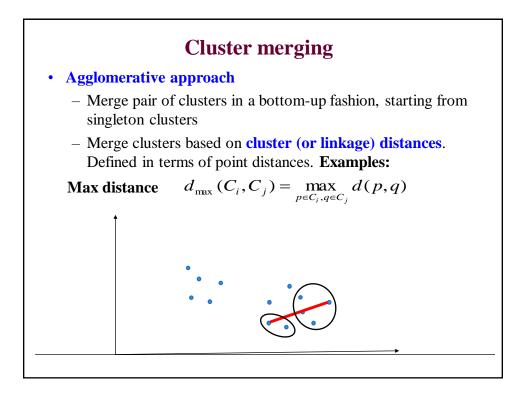


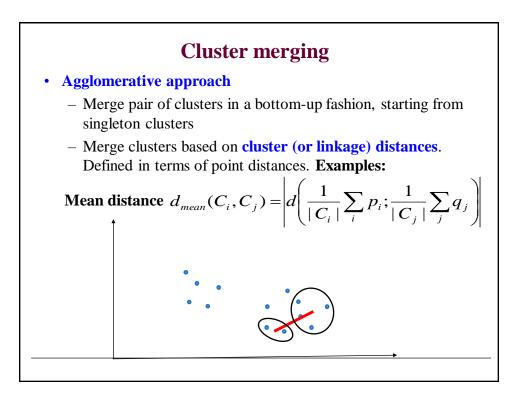










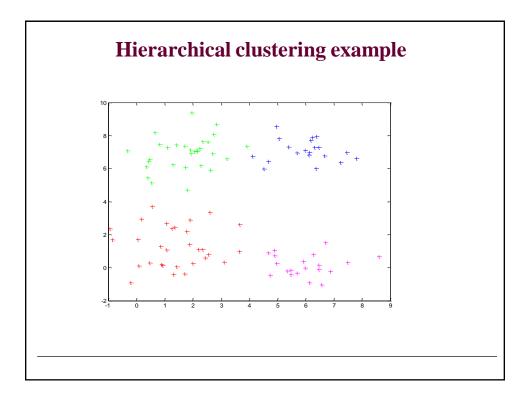


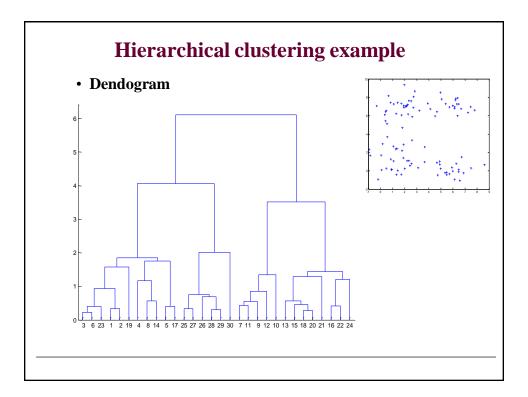
Hierarchical (agglomerative) clustering Approach: Compute dissimilarity matrix for all pairs of points uses standard or other distance measures Construct clusters greedily: Agglomerative approach Merge pair of clusters in a bottom-up fashion, starting from singleton clusters Stop the greedy construction when some criterion is satisfied E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard distance or other dissimilarity measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters





Hierarchical clustering

• Advantage:

 Smaller computational cost; avoids scanning all possible clusters

• Disadvantage:

 Greedy choice fixes the order in which clusters are merged; cannot be repaired

• Partial solution:

• combine hierarchical clustering with iterative algorithms like k-means algorithm