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Clustering

Groups together “similar” instances in the data sample
Basic clustering problem:

« distribute data into k different groups such that data points
similar to each other are in the same group

« Similarity between data points is typically defined in terms
of some distance metric (can be chosen)
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Clustering

Groups together “similar” instances in the data sample
Basic clustering problem:

« distribute data into k different groups such that data points
similar to each other are in the same group

« Similarity between data points is typically defined in terms
of some distance metric (can be chosen)

Clustering example

Clustering could be applied to different types of data instances
Example: partition patients into groups based on similarities

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85




Clustering example

Clustering could be applied to different types of data instances
Example: partition patients into groups based on similarities

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

Key question: How to define similarity between instances?

Similarity and dissimilarity measures

 Dissimilarity measure
— Numerical measure of how different two data objects are
— Often expressed in terms of a distance metric

- Example: Euclidean: .
d(a’b): Z(ai_bi)z
i=1

+ Similarity measure
— Numerical measure of how alike two data objects are
— Examples:
« Cosine similarity: K(a,b)=a'b
+ Gaussian kernel:

1 la—blf
RRL ) b




Distance metrics

Dissimilarity is often measured with the help of a distance
metrics.

Properties of distance metrics:
Assume 2 data entries a, b

Positiveness: d(a,b)=0
Symmetry: d(a,b) =d(b,a)
Identity: d(a,a)=0

Triangle inequality: d(a,c)<d(a,b)+d(b,c)

Distance metrics

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7) 4,7)

X2 \)i
(6, 4)

Xy

What distance metric to use?
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Assume 2 real-valued data-points:
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What distance metric to use?

Euclidian: d(a,b) :\/Zk:(ai—_bi)z

Distance metrics

Assume 2 real-valued data-points:
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What distance metric to use?

Euclidian: d(a,b) = /_Zk:(ai _b)?




Distance metrics

Assume 2 real-valued data-points:

a=(6, 4)
b=(4, 7) 4,7)
X; :
(37 N\
S (6, 4)
(2)?
What distance metric to use? Xy

Squared Euclidian: works for an arbitrary k-dimensional

PE @b @ -b)?

Distance metrics

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7)

(4,7)
Xy i

Manhattan distance:
works for an arbitrary k-dimensional space

d(a.b)= Y] a, ~b|




Distance measures
Generalized distance metric:
d 2(a, b)=(a- b)T F‘l(a— b)

' semi-definite positive matrix

' is a matrix that weights attributes proportionally to their
importance. Different weights lead to a different distance
metric.

If ' =1 we get squared Euclidean

I'=X (covariance matrix) — we get the Mahalanobis
distance that takes into account correlations among
attributes

Distance measures
Generalized distance metric:
d2(a,b)=(a—b) I *(a—b)

Special case: T =1 we get squared Euclidean
Example:




Distance measures

Generalized distance metric:

d?(a,b)=(a—b)' T *(a—Db)
Special case: '=y defines Mahalanobis distance
Example: Assume dimensions are independent in data

Covariance matrix Inverse covariance
) 1
Z: ! 0 -1 = 0
0 o} > = 1
0 —
O,
1
oz %027 22 (ay
d*@b)=[2 -3 * [ }=—2+—2
0o = |- 3| o o,

O,

Contribution of each dimension to the squared Euclidean is
normalized (rescalled) by the variance of that dimension

Distance measures

Assume categorical data where integers represent the
different categories:

01100
10301
21102
11112

What distance metric to use?




Distance measures

Assume categorical data where integers represent the
different categories:

01100

RN e
e =)
W
oo
NN

What distance metric to use?

Hamming distance: The number of values that need to be
changed to make them the same

Distance measures.

Assume pure binary values data:
01101

= o R
=)
N
=)
Nl

One metric is the Hamming distance: The number of bits that
need to be changed to make the entries the same

How about squared Euclidean?

d*(a,b) = (a ~b)?




Distance measures.

Assume pure binary values data:
01101

RO R
=)
e
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One metric is the Hamming distance: The number of bits that
need to be changed to make the entries the same

How about the squared Euclidean?

d*(a,b) = > (a ~b)?

The same as Hamming distance.

Distance measures

Combination of real-valued and categorical attributes

Patient # Age Sex Heart Rate Blood presslure
Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

What distance metric to use?
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Distance measures

Combination of real-valued and categorical attributes

What distance metric to use? Solutions:

« A weighted sum approach: e.g. a mix of Euclidian and
Hamming distances for subsets of attributes

» Generalized distance metric (weighted combination, use
one-hot representation of categories)

More complex solutions: tensors and decompositions

Patient # Age Sex Heart Rate Blood press|ure
Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

Distance metrics and similarity

+ Similarity measure
— Numerical measure of how alike two data objects are

— Do not have to satisfy the properties like the ones for the
distance metric

— Examples:
« Cosine similarity:K (a,b) =a'b

 Gaussian kernel: 1 a—blP?
K(a,b)=—2 d,Zexp{——” > ”2}
(27h?) 2h
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Clustering

Clustering is useful for:
« Similarity/Dissimilarity analysis
Analyze what data points in the sample are close to each other
« Dimensionality reduction
High dimensional data replaced with a group (cluster) label
» Data reduction: Replaces many data-points with a point
representing the group mean
Challenges:
« How to measure similarity (problem/data specific)?
» How to choose the number of groups?

— Many clustering algorithms require us to provide the
number of groups ahead of time

Clustering algorithms

Algorithms covered:

+ K-means algorithm
» Hierarchical methods
— Agglomerative

— Divisive
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K-means clustering algorithm

 An iterative clustering algorithm
« works in the d-dimensional R space representing x

K-Means clustering algorithm:
Initialize randomly k values of means (centers)
Repeat

— Partition the data according to the current set of means
(using the similarity measure)

— Move the means to the center of the data in the current
partition

Until no change in the means

K-means: example

« Initialize the cluster centers
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K-means: example

 Calculate the distances of each point to all centers

K-means: example

» For each example pick the best (closest) center
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* Recalculate the new mean from all data examples assigned

K-means: example

to the same cluster center

K-means: example

Shift the cluster center to the new mean

I

:
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K-means: example

« Shift the cluster centers to the new calculated means

K-means: example

* And repeat the iteration ...
« Till no change in the centers
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K-means clustering algorithm

K-Means algorithm:

Initialize randomly k values of means (centers)

Repeat

— Partition the data according to the current set of means
(using the similarity measure)

— Move the means to the center of the data in the current
partition

Until no change in the means

Properties:
« Minimizes the sum of squared center-point distances for all
clusters ’
. 5 B
min > ST x; —u; |I” u;=center of cluster S,

i=1 x;eS;

K-means clustering algorithm

* Properties:
— converges to centers minimizing the sum of squared
center-point distances (still local optima)
— The result is sensitive to the initial means’ values
» Advantages:
— Simplicity
— Generality — can work for more than one distance measure
» Drawbacks:
— Can perform poorly with overlapping regions
— Lack of robustness to outliers
— Good for attributes (features) with continuous values
« Allows us to compute cluster means
» k-medoid algorithm used for discrete data
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Hierarchical clustering

« Builds a hierarchy of clusters
(groups) with singleton groups
at the bottom and ‘all points’ group

Uses many different dissimilarity measures

» Pure real-valued data-points:
— Euclidean, Manhattan, Minkowski Pure categorical data:
— Hamming distance,
— Combination of real-valued and categorical attributes
— Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical
clustering

» Agglomerative approach

— Merge pair of clusters in a
bottom-up fashion, starting

from singleton clusters
) o( L /

+ Divisive approach:

— Splits clusters in top-down
fashion, starting from one

complete cluster ﬁ/
Y4
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Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

» Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

 Stop the greedy construction when some criterion is satisfied
— E.g. fixed number of clusters

Hierarchical (agglomerative) clustering

Approach:
« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures
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Hierarchical (agglomerative) clustering

Approach:
« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

Ny,

N datapoints, O(N?) pairs, O(N?) distances

Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

» Construct clusters greedily:
— Agglomerative approach

» Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

M)
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Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

« Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

g,

Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

» Construct clusters greedily:
— Agglomerative approach

» Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

ey
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Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

» Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

oy

Cluster merging

» Agglomerative approach
— Merge pair of clusters in a bottom-up fashion, starting from
singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Mindistance d;,(C;,C;)= min d(p,q)
peC;, Cj

qe
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Cluster merging

+ Agglomerative approach

— Merge pair of clusters in a bottom-up fashion, starting from
singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Max distance  d ., (C;,C;)= max d(p,q)
peC;,qeC;

]

Cluster merging

» Agglomerative approach

— Merge pair of clusters in a bottom-up fashion, starting from
singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Mean distance d .., (C;,C;) =|d izpi;iij
1Ci |5 1Ci 15

mean
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Hierarchical (agglomerative) clustering

Approach:

« Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

« Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

 Stop the greedy construction when some criterion is satisfied
— E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:
« Compute dissimilarity matrix for all pairs of points
— uses standard distance or other dissimilarity measures
» Construct clusters greedily:
— Agglomerative approach

» Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

— Divisive approach:

« Splits clusters in top-down fashion, starting from one
complete cluster

+ Stop the greedy construction when some criterion is satisfied
— E.g. fixed number of clusters
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Hierarchical clustering example
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Hierarchical clustering example

» Dendogram
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Hierarchical clustering

« Advantage:

— Smaller computational cost; avoids scanning all possible
clusters

« Disadvantage:

— Greedy choice fixes the order in which clusters are merged,;
cannot be repaired

« Partial solution:

« combine hierarchical clustering with iterative algorithms
like k-means algorithm
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