CS 1675 Introduction to Machine Learning
Lecture 6

Density estimation |

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Homework assignments

Homework assignment 1 was due today
Homework assignment 2:

» Due next week on Thursday

» Two parts: Report + Programs

Submission:

+ via Courseweb

» Report (submit in pdf)

» Programs (submit using the zip or tar archive)
» Deadline 9:30am (prior to the lecture)

Rules:

» Strict deadline

 No collaboration on the programming and the report part
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Density estimation

Density estimation: is an unsupervised learning problem

» Goal: Learn a model that represent the relations among

attributes in the data
D={D,D,,. D}

Data: D, =X; a vector of attribute values
Attributes:

+ modeled by random variables X={X,, X,,..., X} with
— Continuous or discrete valued variables

Density estimation: learn an underlying probability
distribution model : p(X) = p(X,, X,,...,X,) fromD

Density estimation

Data: p ={D,D,,..D.}
D, =x; a vector of attribute values

Objective: estimate the model of the underlying probability
distribution over variables X , p(X), using examples in D

true distributi estimate
istribution n samples — -
p(X) D={D,,D,....D,} p(X)
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Density estimation: iid assumptions

true distribution n samples esfimate
pP(X) D={D,,D,,..D.} ' p(X)

Standard (iid) assumptions: Samples
+ are independent of each other
+ come from the same (identical) distribution (fixed p(X))

e Independently drawn instances
e ya L
——¢ from the same fixed distribution

Density estimation

Types of density estimation:

(1) Parametric

« the distribution is modeled using a set of parameters ©
P(X) = p(X|©)

+ Estimation: find parameters @ fitting the data D

« Example: estimate the mean and covariance of a normal

distribution
_/\ P(x) =N(X| u,0)




Density estimation

Types of density estimation:

(2) Non-parametric

» The model of the distribution utilizes all examples in D
« As if all examples were parameters of the distribution

. P(X) = p(X| D)

+ Examples:

histogram Kernel density estimation

/\/\/\,\

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
* Asetof random variables X —{x  X,,..., X}
« A model of the distribution over variables in X
with parameters ® : p(X|©®)
» Data D={D,,D,,..,D,}

» Objective: find parameters @ such that p(X|®) fits data D
the best

Question:
» How to measure the goodness of fit or alternatively the error?




ML Parameter estimation

Model p(X)= p(X|0O) Data D={D,,D,,.,D,}

- Maximum likelihood (ML) mex, p(D|6,4)
— Find @ that maximizes likelihood p(D|®,¢)

P(D|®,8)=P(D,,D,,..D,[6,¢)
=P(0,16,5)P(D;]0,9)...P(D, |6,3)
=H P(D;©,¢)

Independent
examples

®ML =argmaxg p(D|®’ 5)

Logarithm function

—

Log x

Properties of the log function: ?




Logarithm

i ma/

log f (®)

max

min

O*=argmax,, f(®)=argmax, log f (®)

ML Parameter estimation

Model p(X)= p(X|0O) Data D={D,D,,.,D,}

« Maximum likelihood (ML) mex, p(D|6,<)
— Find @ that maximizes likelihood p(D|®,¢)

P(D|®,8)=P(D,,D,,..D,[6,¢)
=P(0,16,5)P(D;]0,9)...P(D, |6,3)
=H P(D;©,¢)

Independent
examples

log-likelihood log p(DlG),f):Zn:IogP(Di |©,&)

i=1

O, =argmax, p(D|©,s) =argmax, log p(D|©,¢)




Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
*head x =1

* tail X =0

R
i

Model: probability of ahead &
probability of atail ~ (1-6)
Objective: A
We would like to estimate the probability of a head €
from data

Parameter estimation. Example.

« Assume the unknown and possibly biased coin

+ Probability of the head is €

» Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?

0 ="?




Parameter estimation. Example

« Assume the unknown and possibly biased coin
« Probability of the head is €
» Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15

— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

§-2_06
25

This is the maximum likelihood estimate of the parameter &

R
i

Probability of an outcome

Data: D asequence of outcomes X; such that
* head x =1
* tail X =0
Model: probability of ahead €
probability of atail  (1-6)

Assume: we know the probability &
Probability of an outcome of a coin flip x;

P(x |0)=6" (1—0)" ) «= Bernoulli distribution

— Combines the probability of a head and a tail

— Sothat X; is going to pick its correct probability
— Gives 6 for x =1

— Gives (1-6) for x,=0




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead x =1
* tail X =0
Model: probability of ahead @
probability of atail ~ (1—6)
Assume: a sequence of independent coin flips

R
i

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|&)="

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead x =1
e tail X, =0
Model: probability of ahead @
probability of a tail ~ (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D= 110101
What is the probability of observing a data sequence D:

P(D | 8) = 01— 0)0(1—6)0

=
i




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead x =1
e tail X =0
Model: probability of ahead @
probability of atail ~ (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D= 110101
What is the probability of observing a data sequence D:

P(D | 0) = 60(1L—0)0(1— 6)6

R
i

likelihood of the data

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead x =1
e tail X, =0
Model: probability of ahead @
probability of a tail ~ (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D= 110101
What is the probability of observing a data sequence D:

P(D|6) =00(1—-0)0(1—6)0
PDO)=]]o" @-0)""

1=
Can be rewritten using the Bernoulli distribution:

=
i
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The goodness of fit to the data

Learning: we do not know the value of the parameter (
Our learning goal: =
« Find the parameter @ that fits the data D the best?
The solution to the “best”: Maximize the likelihood

P(D|8)= f[exi 1-0)*

Intuition:
« more likely are the data given the model, the better is the fit
Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit ;
Error(D,0) =—P(D|60)

Maximum likelihood (ML) estimate.
Likelihood of data: n
P(D|6,&)=]]¢" @-6)“™

Maximum likelihood estimate
Oy, =argmax P(D | 6,¢&)
0

Optimize log-likelihood (the same as maximizing likelihood)

I(D,#)=Ilog P(D|6&,%) =log ﬁgxi (1-0)™) =

11



Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D|16,&) =]]o" @-6)*
i=1

Maximum likelihood estimate
Oy, =argmax P(D | 6,¢&)
0

T

Optimize log-likelihood (the same as maximizing likelihood)

I(D,0)=log P(D|8,&) =log ﬁgxi (1-6)) =

Zn:xi log &+ (1 x.) log(1-6) = log 6’2 X, + Iog(l—H)Z(l— X;)

i=1

N, - number of heads seen N, - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood
I(D,8)=N,log&+N, log(1-6)
Set derivative to zero
ad,0) N, N, _
00 6 (1-0)

Solving 0=

ML Solution: g, = N __ Ny

12



Maximum likelihood estimate. Example

« Assume the unknown and possibly biased coin
« Probability of the head is €
» Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?

),
L)

Maximum likelihood estimate. Example

« Assume the unknown and possibly biased coin

« Probability of the head is €

» Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of head and tail ?

+N, 25
N, 10 _
N,+N, 25

Head: HML—m— N, —15:0.6

N
Tail:  (1-6,,)=

0.4

N
N2
N
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