CS 1675 Introduction to Machine Learning Lecture 6

Density estimation I

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square

Homework assignments

Homework assignment 1 was due today Homework assignment 2:

- Due next week on Thursday
- Two parts: **Report** + **Programs**

Submission:

- · via Courseweb
- Report (submit in pdf)
- Programs (submit using the zip or tar archive)
- Deadline 9:30am (prior to the lecture)

Rules:

- · Strict deadline
- No collaboration on the programming and the report part

Density estimation

Density estimation: is an unsupervised learning problem

• **Goal:** Learn a model that represent the relations among attributes in the data

$$D = \{D_1, D_2, ..., D_n\}$$

Data: $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with
 - Continuous or discrete valued variables

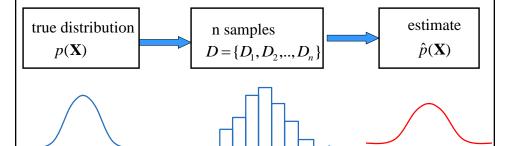
Density estimation: learn an underlying probability distribution model: $p(\mathbf{X}) = p(X_1, X_2, ..., X_d)$ from **D**

Density estimation

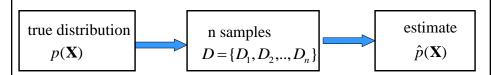
Data: $D = \{D_1, D_2, ..., D_n\}$

 $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: estimate the model of the underlying probability distribution over variables \mathbf{X} , $p(\mathbf{X})$, using examples in D

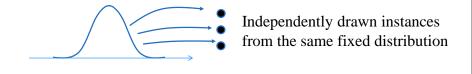


Density estimation: iid assumptions



Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))



Density estimation

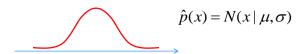
Types of density estimation:

(1) Parametric

- the distribution is modeled using a set of parameters $\boldsymbol{\Theta}$

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \Theta)$$

- Estimation: find parameters Θ fitting the data D
- **Example:** estimate the mean and covariance of a normal distribution



Density estimation

Types of density estimation:

(2) Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- $\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid D)$
- Examples:

histogram

Kernel density estimation

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(X | \Theta)$
- **Data** $D = \{D_1, D_2, ..., D_n\}$
- **Objective:** find parameters Θ such that $p(\mathbf{X}|\Theta)$ fits data D the best

Question:

• How to measure the **goodness of fit** or alternatively **the error**?

ML Parameter estimation

Model
$$\hat{p}(\mathbf{X}) = p(\mathbf{X} | \mathbf{\Theta})$$
 Data

Data
$$D = \{D_1, D_2, ..., D_n\}$$

• Maximum likelihood (ML)

$$\max_{\Theta} p(D | \Theta, \xi)$$

- Find Θ that maximizes likelihood $p(D | \Theta, \xi)$

$$P(D \mid \Theta, \xi) = P(D_1, D_2, ..., D_n \mid \Theta, \xi)$$

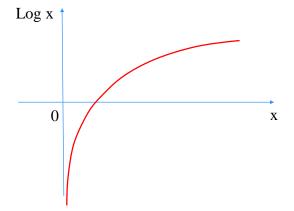
$$= P(D_1 \mid \Theta, \xi) P(D_2 \mid \Theta, \xi) ... P(D_n \mid \Theta, \xi)$$

$$= \prod_{i=1}^{n} P(D_i \mid \Theta, \xi)$$

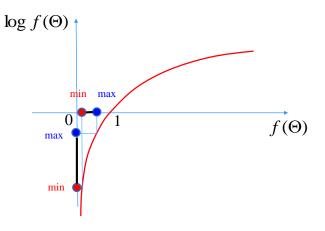
Independent examples

$$\Theta_{ML} = \arg\max_{\Theta} p(D \mid \Theta, \xi)$$

Logarithm function



Properties of the log function: ?



$$\Theta^* = \arg \max_{\Theta} f(\Theta) = \arg \max_{\Theta} \log f(\Theta)$$

ML Parameter estimation

Model $\hat{p}(\mathbf{X}) = p(\mathbf{X} | \mathbf{\Theta})$ **Data** $D = \{D_1, D_2, ..., D_n\}$

Maximum likelihood (ML) $\max_{\Theta} p(D | \Theta, \xi)$

- Find Θ that maximizes likelihood $p(D | \Theta, \xi)$

$$P(D \mid \Theta, \xi) = P(D_1, D_2, ..., D_n \mid \Theta, \xi)$$

$$= P(D_1 \mid \Theta, \xi) P(D_2 \mid \Theta, \xi) ... P(D_n \mid \Theta, \xi)$$

$$= \prod_{i=1}^{n} P(D_i \mid \Theta, \xi)$$
Independent examples

log-likelihood $\log p(D \mid \Theta, \xi) = \sum_{i=1}^{n} \log P(D_i \mid \Theta, \xi)$

 $\Theta_{\mathit{ML}} = \operatorname{arg\,max}_{\Theta} \, p(D \,|\, \Theta, \xi) = \operatorname{arg\,max}_{\Theta} \log \, p(D \,|\, \Theta, \xi)$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your estimate of the probability of a head?

$$\tilde{\theta} = ?$$

Parameter estimation. Example

Assume the unknown and possibly biased coin

- Probability of the head is $\,\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your choice of the probability of a head?

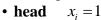
Solution: use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

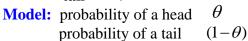
This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that



• tail
$$x_i = 0$$



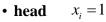
Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

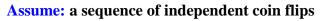
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that



• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$



D = H H T H T H (encoded as D = 110101)

What is the probability of observing the data sequence **D**:

$$P(D | \theta) = ?$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• head
$$x_i = 1$$

• tail
$$x_i = 0$$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence \mathbf{D} :

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

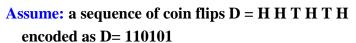
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• head $x_i = 1$

• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$



What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• head $x_i = 1$

• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter Our learning goal:

• Find the parameter θ that fits the data D the best?

The solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} =$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D, \theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

Solving
$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

Maximum likelihood estimate. Example

Assume the unknown and possibly biased coin

- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

· Assume the unknown and possibly biased coin

- Probability of the head is $\; \theta \;$
- Data:

HHTTHHTHTTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of head and tail?

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$
Tail: $(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$