CS 1675 Introduction to Machine Learning

 Lecture 5
Density estimation

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Review of probabilities

Probability theory

Studies and describes random processes and their outcomes

- Random processes may result in multiple different outcomes
- Example 1: coin flip
- Outcome is either head or tail (binary outcome)
- Fair coin: outcomes are equally likely

- Example 2: sum of numbers obtained by rolling 2 dice
- Outcome number in between 2 to 12
- Fair dices: outcome 2 is less likely then 3

Probability theory

Studies and describes random processes and their outcomes

- Random processes may have multiple different outcomes
- Example 3: height of a person
- Select randomly a person from your school/city and report her height
- Outcomes can be real numbers
- And many others related to measurements,
 lotteries, etc

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 1: coin flip
- Fair coin: outcomes are equally likely
- Probability of head is 0.5 and tail is 0.5
- Biased coin

- Probability of head is 0.8 and tail is 0.2
- Head outcome is 4 times more likely than tail

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 2: sum of numbers obtained by rolling 2 dice
- Outcome number in between 2 to 12
- Fair dice: outcome 2 is less likely then 3

4 is less likely then 3 , etc

Probability distribution function

Discrete (mutually exclusive) outcomes - the chance of outcomes is represented by a probability distribution function

- probability distribution function - assigns a number between 0 and 1 to every outcome
- Example 1: coin flip
- Biased coin
- Probability of head is 0.8 and tail is 0.2
- Head outcome is 4 time more likely than tail
$\mathrm{P}($ tail $)=0.2$
$\mathrm{P}($ head $)=0.8$
$P($ coin $)=\left[\begin{array}{l}0.2 \\ 0.8\end{array}\right]$
- What is the condition we need to satisfy ?
- Sum of probabilities for discrete set of outcomes is 1

Probability for real-valued outcomes

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 3: height of a person
- Select randomly a person from your school/city and report her height
- Outcomes can be real numbers
- Different outcomes can be more or less likely

Normal (Gaussian) density

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- Probability density function - $\mathbf{p}(\mathbf{x})$

- Conditions on $\mathbf{p}(\mathbf{x})$ and 1?

$$
\int p(x) d x=1
$$

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- Probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be negatives?
- No

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be >1 ?
- Remember we need: $\quad \int p(x) d x=1$
- Yes

Random variable
 Random variable $=\mathbf{A}$ function that maps observed outcomes (quantities) to real valued outcomes

Binary random variables: Two outcomes mapped to 0,1
Example: Coin flip with head and tail outcomes

- Tail mapped to $0, \quad P(x=0)$
- Head mapped to $1 \quad P(x=1)$

Example of observed outcome sequence:

- tail, tail, head, tail, head, head... $\rightarrow 0,0,1,0,1,1, \ldots$

Random variable

Example: roll of a dice

- Outcomes $=1,2,3,4,5,6$ based on the roll of a dice
- trivial map to the same number

A fair dice

A biased dice

Example of observed outcome sequence:

- 3, 6, 2, 6, 1, 2, 5, 4, 5, 3, $3 \ldots$

Random variable

Example: x height of a person
Real valued outcomes

- trivial map to the same number

Example of observed outcome sequence:

- 5'4", 6'1", 5'9", 5'8"

Expected value of a random variable

Assume a random variable X with K discrete values

- Expected value of X is:

$$
E[X]=\sum_{i=1}^{K} p\left(X=x_{i}\right) x_{i}
$$

Example: Fair dice

- Outcomes $=1,2,3,4,5,6$ based on the roll

$$
\begin{gathered}
\text { Fair dice } \frac{\operatorname{D}_{2}}{} \frac{\mathrm{P}=1 / 6}{123456} \mathrm{~m} \\
E[X]=\frac{1}{6} * 1+\frac{1}{6} * 2+\frac{1}{6} * 3+\frac{1}{6} * 4+\frac{1}{6} * 5+\frac{1}{6} * 6=3.5
\end{gathered}
$$

Expected value of a random variable

Assume a random variable X with continuous values

$$
E[X]=\int x^{*} p(x) d x
$$

Example: x height of a person

- Density function: Gaussian
- Expected value of \mathbf{X} is the center of the Gaussian distribution or its mean

Probability: basics

- Let A be an outcome event, and $\neg A$ its complement.
- Then

$$
P(A)+P(\neg A)=?
$$

Probability: basics

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=?
\end{aligned}
$$

Probability: basics

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=0 \\
& P(\text { False })=0 \\
& P(A \vee \neg A)=?
\end{aligned}
$$

Probability: basics

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=0 \\
& P(\text { False })=0 \\
& P(A \vee \neg A)=1 \\
& P(\text { True })=1
\end{aligned}
$$

Joint probability

Joint probability:

- Let A and B be two events. The probability of an event A, B occurring jointly

$$
P(A \wedge B)=P(A, B)
$$

We can add more events, say, $\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
P(A \wedge B \wedge C)=P(A, B, C)
$$

Independence

Independence :

- Let A, B be two events. The events are independent if:

$$
P(A, B)=?
$$

Independence

Independence :

- Let A, B be two events. The events are independent if:

$$
P(A, B)=P(A) P(B)
$$

Conditional probability

Conditional probability :

- Let A, B be two events. The conditional probability of A given B is defined as:

$$
P(A \mid B)=\text { ? }
$$

Conditional probability

Conditional probability :

- Let A, B be two events. The conditional probability of A given B is defined as:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Product rule:

- A rewrite of the conditional probability

$$
P(A, B)=P(A \mid B) P(B)
$$

Bayes theorem

Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Why?

$$
\begin{gathered}
P(A \mid B)=\frac{P(A, B)}{P(B)} P(A, B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

Density estimation

Density estimation

Density estimation: is an unsupervised learning problem

- Goal: Learn a model that represent the relations among attributes in the data

$$
D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}
$$

Data: $\quad D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with
- Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model : $p(\mathbf{X})=p\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ from \mathbf{D}

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: estimate the model of the underlying probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Density estimation: iid assumptions

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Density estimation

Types of density estimation:

(1) Parametric

- the distribution is modeled using a set of parameters Θ

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \Theta)
$$

- Estimation: find parameters Θ fitting the data D
- Example: estimate the mean and covariance of a normal distribution

Density estimation

Types of density estimation:
(2) Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- $\quad \hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)$
- Examples:
histogram

Kernel density estimation

