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Probability theory

Studies and describes random processes and their outcomes

« Random processes may result in multiple different
outcomes

« Example 1: coin flip
— Outcome is either head or tail (binary outcome)
— Fair coin: outcomes are equally likely

« Example 2: sum of numbers obtained by rolling 2 dice
— Outcome number in between 2 to 12
— Fair dices: outcome 2 is less likely then 3

Probability theory

Studies and describes random processes and their outcomes
« Random processes may have multiple different outcomes

« Example 3: height of a person
— Select randomly a person from your school/city
and report her height
— Outcomes can be real numbers i

« And many others related to measurements, S -
lotteries, etc




Probabilities

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities

« Example 1: coin flip
— Fair coin: outcomes are equally likely
» Probability of head is 0.5 and tail is 0.5
— Biased coin
» Probability of head is 0.8 and tail is 0.2
» Head outcome is 4 times more likely than tail

Probabilities

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities

« Example 2: sum of numbers obtained by rolling 2 dice
— Outcome number in between 2 to 12
— Fair dice: outcome 2 is less likely then 3 VL
4 is less likely then 3, etc < ad
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Probability distribution function

Discrete (mutually exclusive) outcomes — the chance of
outcomes is represented by a probability distribution function

 probability distribution function — assigns a number
between 0 and 1 to every outcome

« Example 1: coin flip
— Biased coin

» Probability of head is 0.8 and tail is 0.2
» Head outcome is 4 time more likely than tail
P(tail) =0.2 . 0.2
Pghea)d) =028 P(coin) = {0_8}

« What is the condition we need to satisfy ?

« Sum of probabilities for discrete set of outcomes is 1

Probability for real-valued outcomes

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities

« Example 3: height of a person
— Select randomly a person from your school/city
and report her height
— Outcomes can be real numbers
— Different outcomes can be more or less likely

1.665 meters
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Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

 Probability density function — p(x)
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« Conditions on p(x) and 1?

j p(x)dx =1

Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

 Probability density function — p(x)
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« Can p(x) values for some x be negatives?
* No




Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

« probability density function — p(x)
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« Can p(x) values for some x be > 1?
« Remember we need: J' p(x)dx =1
* Yes

Random variable

Random variable = A function that maps observed outcomes
(quantities) to real valued outcomes

Binary random variables: Two outcomes mapped to 0,1
Example: Coin flip with head and tail outcomes

« Tailmappedto0, P(x=0)

« Headmappedtol P(x=1)

Example of observed outcome sequence:
e tail, tail, head, tail, head, head... = 0,0,1,0,1,1, ...




Random variable

Example: roll of a dice
— Outcomes =1,2,3,4,5,6 based on the roll of a dice
— trivial map to the same number

A biased

dice r

A fair dice

123456 123456

Example of observed outcome sequence:
* 3,6,2,6,1,2,5,4,5,3,3...

Random variable

Example: x height of a person
Real valued outcomes
— trivial map to the same number

410 500 52 54 56 58 510" 600 62 64" 66

Example of observed outcome sequence:
° 594”, 6’1”, 5,9”, 598”




Expected value of a random variable

Assume a random variable X with K discrete values
— Expected value of X is:

E[X] =Z P(X =X)x,

Example: Fair dice
» Qutcomes =1,2,3,4,5,6 based on the roll
P=1/6

Fair dice

123456

E[X] :1*1+1*2+1*3+1*4+1*5+£*6:3.5
6 6 6 6 6 6

Expected value of a random variable

Assume a random variable X with continuous values

E[X]= j x* p(x)dx

Example: x height of a person
+ Density function: Gaussian

» Expected value of X is the center of the Gaussian distribution

or its mean

B

410" 500 52 54 56 5‘8| 510" 6'0° 62" 64" 66




Probability: basics

« Let A be an outcome event, and —A its complement.
— Then

P(A)+ P(—A) =7
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Probability: basics

« Let A be an event, and -A its complement.
— Then

P(A)+P(—A) =1

P(AA—A) =?




Probability: basics

« Let A be an event, and -A its complement.

~ Then
P(A)+P(—A) =1
P(AA—A) =0
P(False) =0

P(Av—A)=?

Probability: basics

« Let A be an event, and -A its complement.

— Then
P(A)+P(=A) =1
P(AA—A) =0
P(False) =0
P(Av—A) =1

P(True) =1
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Joint probability

Joint probability:
« Let A and B be two events. The probability of an event A, B
occurring jointly

P(AAB)=P(A B)

We can add more events, say, A,B,C

P(AABAC)=P(A B,C)

Independence

Independence :
« Let A, B be two events. The events are independent if:

P(A,B)="?
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Independence

Independence :
« Let A, B be two events. The events are independent if:

P(A B)=P(A)P(B)

Conditional probability

Conditional probability :

« Let A, B be two events. The conditional probability of A given
B is defined as:

P(A|B)="
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Conditional probability

Conditional probability :

« Let A, B be two events. The conditional probability of A given
B is defined as:

P(A|B)= P(AB)

P(B)
Product rule:
A rewrite of the conditional probability

P(A,B)=P(A|B)P(B)

Bayes theorem

Bayes theorem

P(BIA)P(A)

P(A[B)= P(B)

Why?
P(A|B) = P(AB)=P(B|AP(A)

P(BIA)P(A)

P(A[B)= P(B)
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Density estimation

Density estimation

Density estimation: is an unsupervised learning problem

» Goal: Learn a model that represent the relations among

attributes in the data
D={D,D,,.,D.}

Data: D, =X; a vector of attribute values
Attributes:

+ modeled by random variables X={X,, X,,..., X} with
— Continuous or discrete valued variables

Density estimation: learn an underlying probability
distribution model : p(X) = p(X, X,,..., X;) fromD
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Density estimation

Data: p ={D,D,,..D.}
a vector of attribute values

D, =x

Objective: estimate the model of the underlying probability
distribution over variables X , p(X), using examplesin D

true distribution
p(X)

-

n samples
D={D,,D,,..,D,}

AN

estimate
p(X)

AN

>

Density estimation: iid assumptions

true distribution
p(X)

-

n samples

D :{Dll Dzl--’ Dn}

Standard (iid) assumptions: Samples
+ are independent of each other
 come from the same (identical) distribution (fixed p(X))

e

/—>.

WAS

—

estimate
p(X)

Independently drawn instances
e from the same fixed distribution
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Density estimation

Types of density estimation:

(1) Parametric

« the distribution is modeled using a set of parameters ©
P(X) = p(X|©)

+ Estimation: find parameters @ fitting the data D

« Example: estimate the mean and covariance of a normal

distribution
A P(x) =N(x| u,0)

Density estimation

Types of density estimation:

(2) Non-parametric

» The model of the distribution utilizes all examples in D
« As if all examples were parameters of the distribution

. P(X) = p(X| D)

« Examples:

histogram Kernel density estimation

/\/\/\,\

16



