CS 1675 Intro to Machine Learning Lecture 4

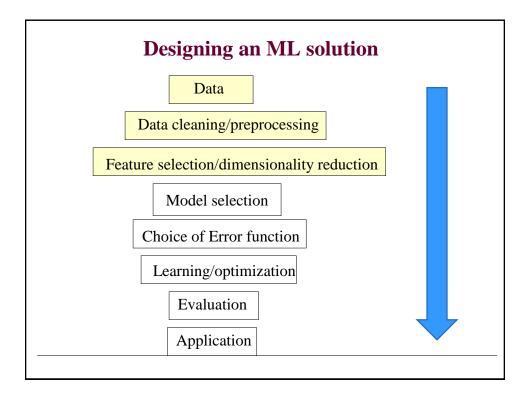
Designing a learning system II

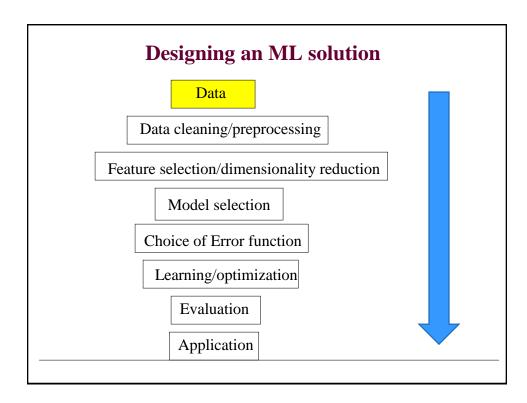
Milos Hauskrecht

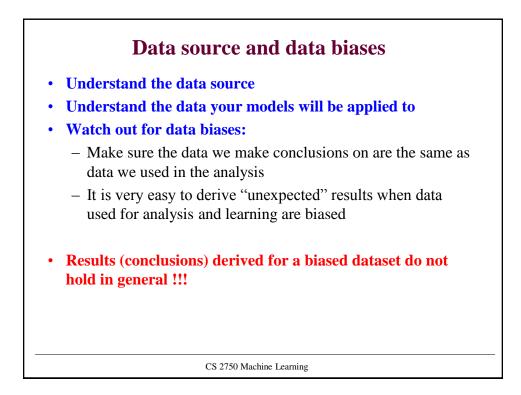
<u>milos@cs.pitt.edu</u> 5329 Sennott Square, x4-8845

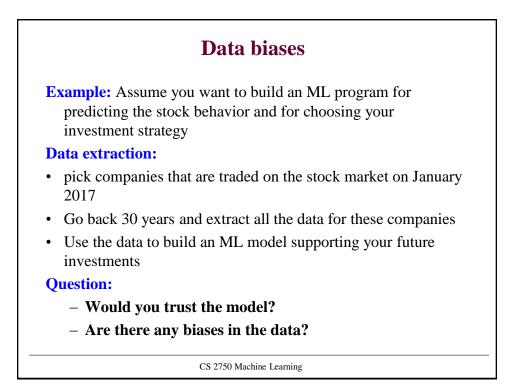
people.cs.pitt.edu/~milos/courses/cs1675/

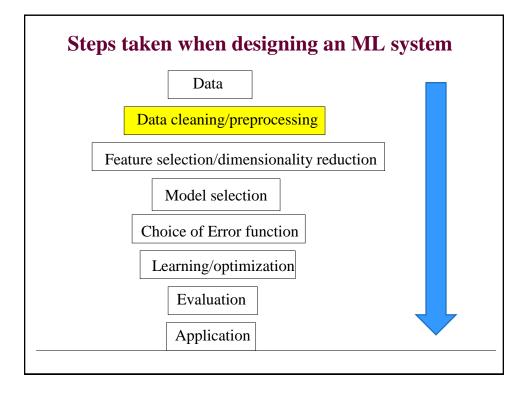
Homework assignment 1 out today Due next week on Thursday Two parts: Report + Programs Submission via Courseweb Report (submit in pdf) Programs (submit using the zip or tar archive) Deadline 9:30am (prior to the lecture) Strict deadline No collaboration on the programming and the report part

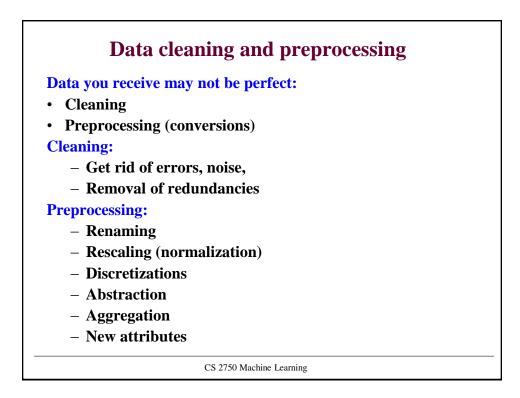


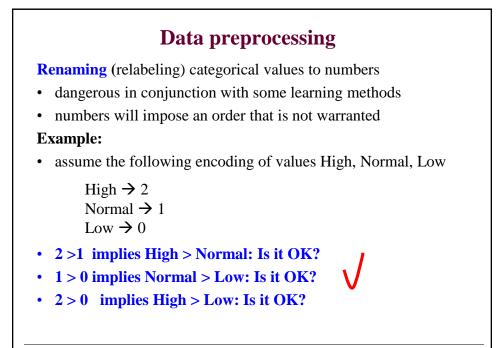


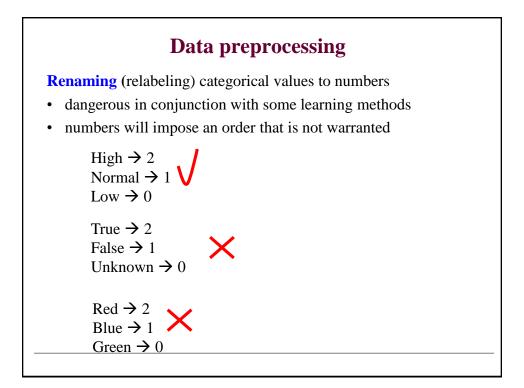










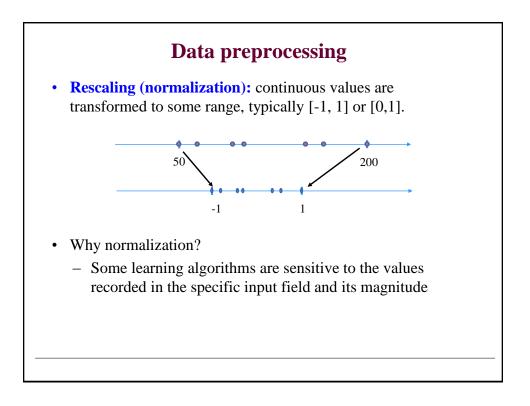


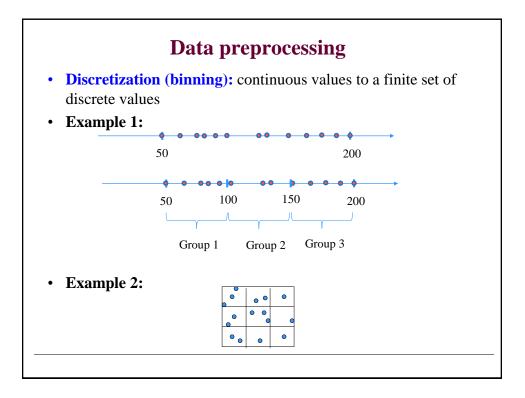
Data preprocessing

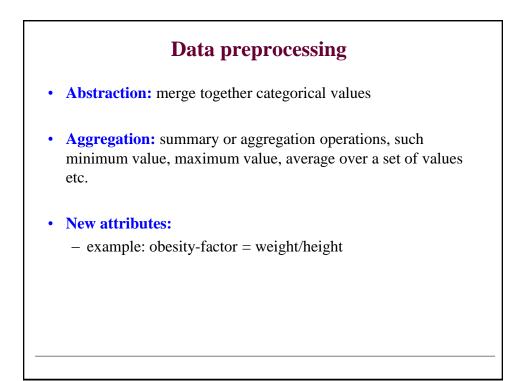
Renaming (relabeling) categorical values to numbers **Problem:** How to safely represent the different categories as numbers when no order exists?

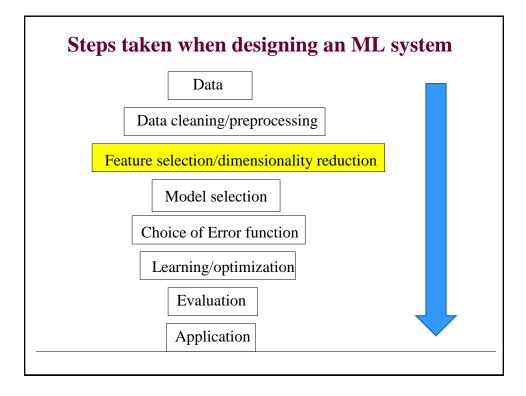
Solution:

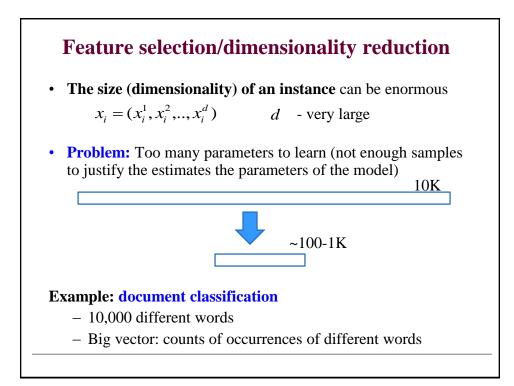
- Use indicator vector (or one-hot) representation.
- Example: Red, Blue, Green colors
 - 3 categories \rightarrow use a vector of size 3 with binary values
 - Encoding:
 - **Red:** (1,0,0);
 - **Blue:** (0,1,0);
 - Green: (0,0,1)

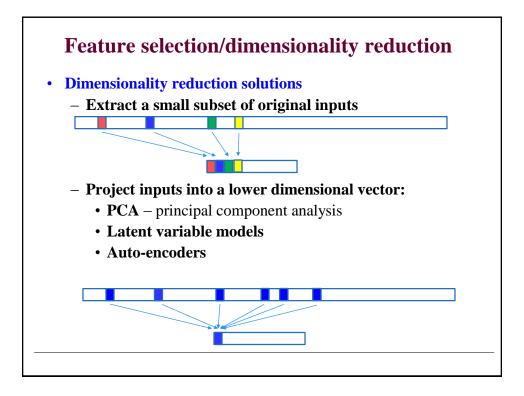














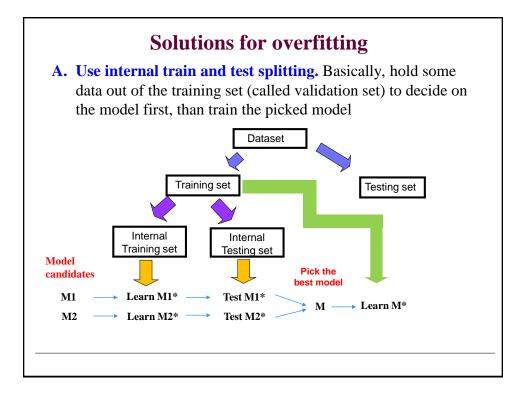
Model selection

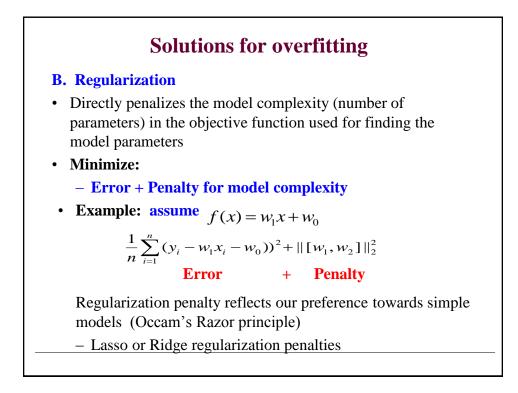
• What is the right model to learn?

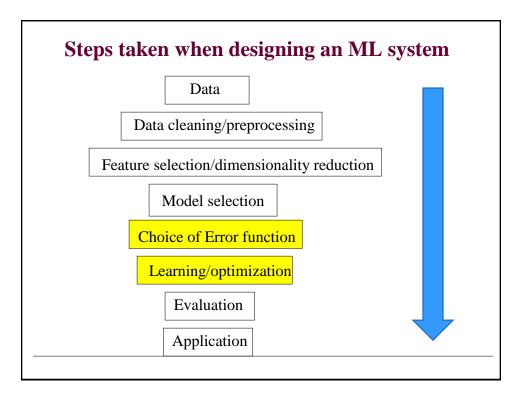
- A prior knowledge helps a lot, but still a lot of guessing
- Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function by looking at data
- Independences and correlations

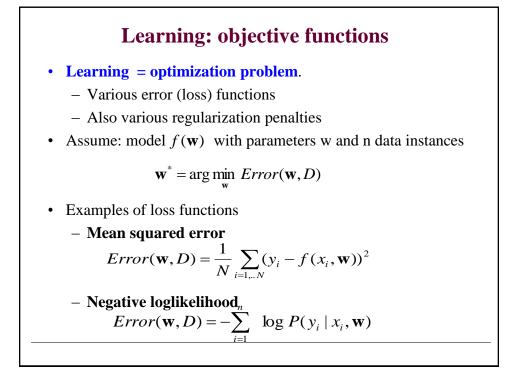
• Overfitting problem

- Take into account the bias and variance of error estimates
- Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
- Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

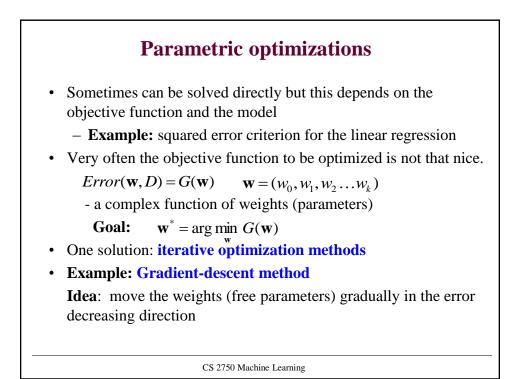


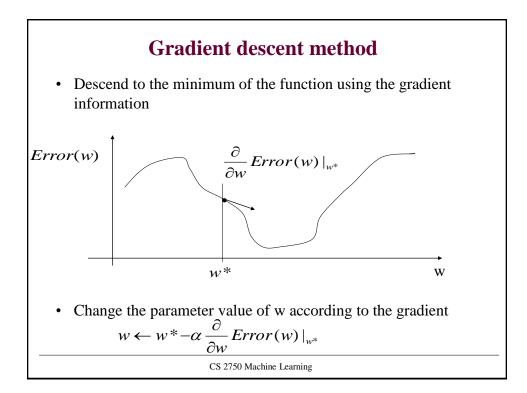


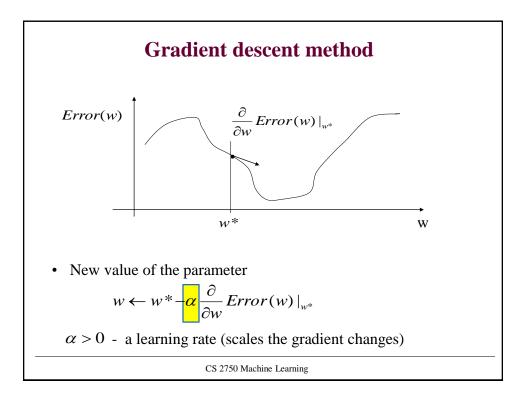


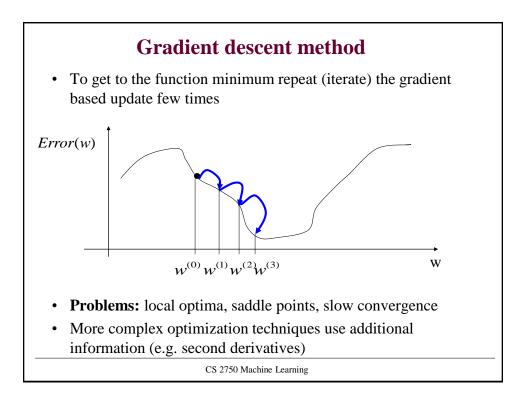


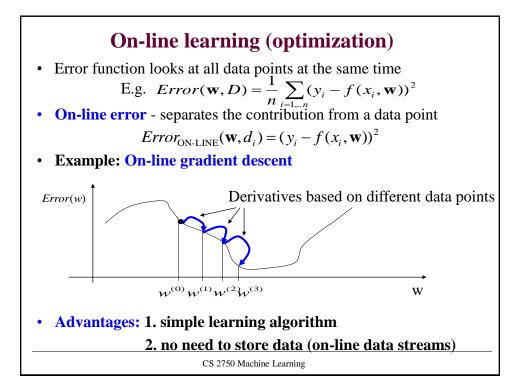
Learning
Learning = optimization problem
• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
Parameter optimizations
Gradient descent, Conjugate gradient
Newton-Rhapson
• Levenberg-Marquard
Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):
Hill-climbing
Simulated-annealing
Genetic algorithms
CS 2750 Machine Learning

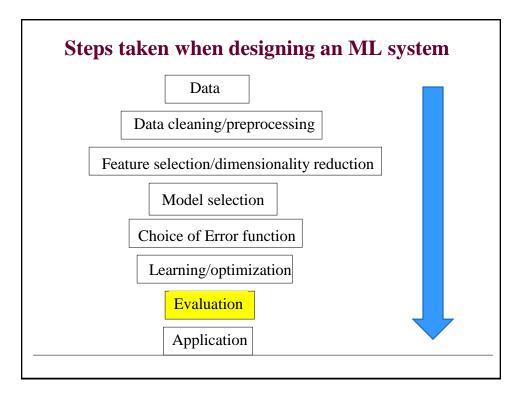


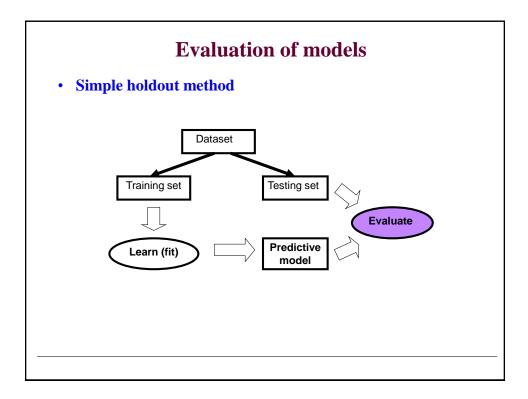




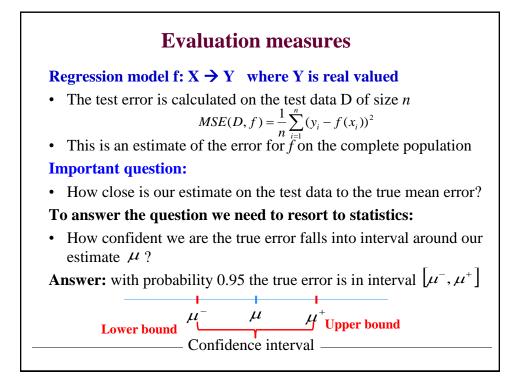


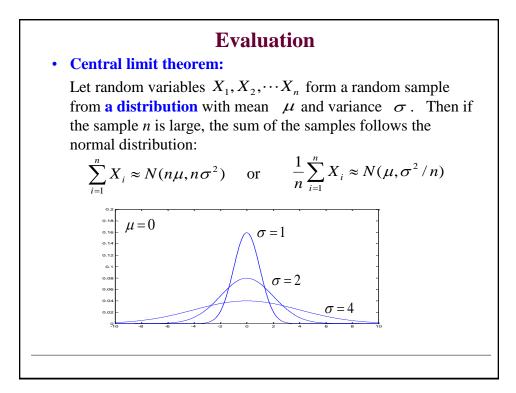


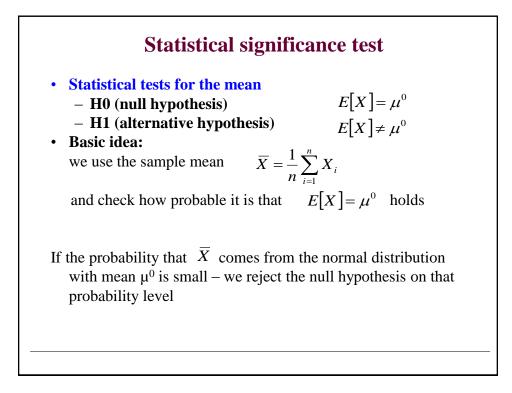


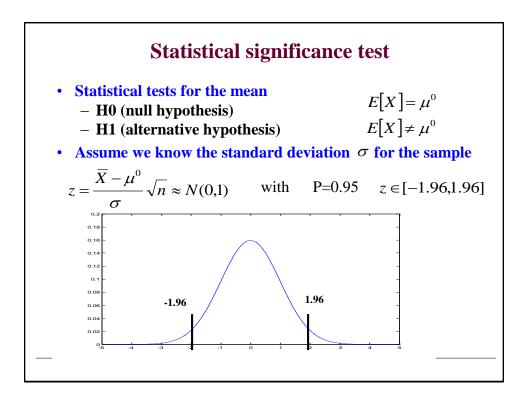


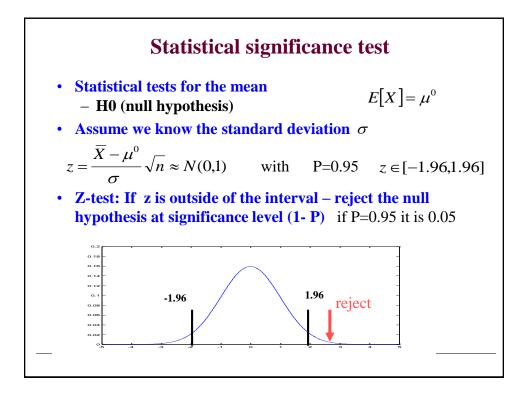
Evaluation measures
Regression model f: $X \rightarrow Y$ where Y is real valued
Mean Squared Error
$MSE(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$
Mean Absolute Error
$MAE(D, f) = \frac{1}{n} \sum_{i=1}^{n} y_i - f(x_i) $
Mean Absolute Percentage Error
$MAPE(D, f) = \frac{100}{n} \sum_{i=1}^{n} \left \frac{y_i - f(x_i)}{y_i} \right $

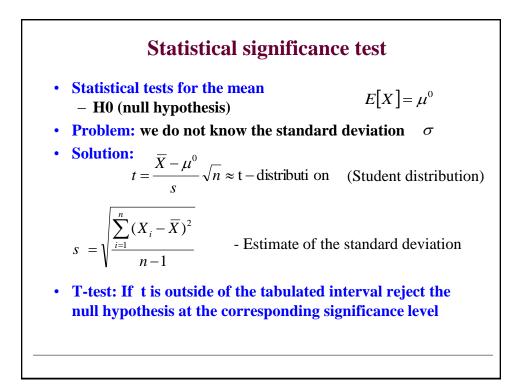


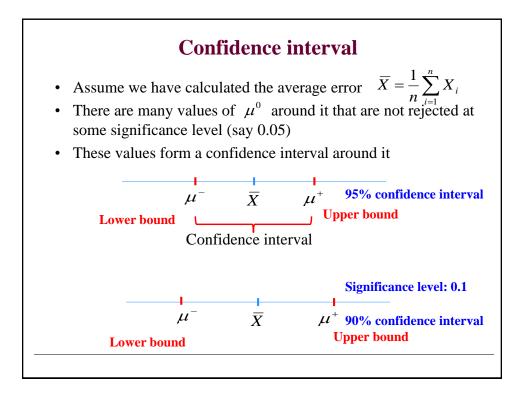












Statistical tests The statistical tests lets us answer a the probability with which the true error falls into the interval around our estimate, say : $MSE(D, f) = \frac{1}{n}\sum_{i=1}^{n} (y_i - f(x_i))^2$ • Compare two models M1 and M2 and determine based on the error on the data entries the probability with which model M1 is different (or better) than M2: $MSE(D, f_1) = \frac{1}{n}\sum_{i=1}^{n} (y_i - f_1(x_i))^2 \qquad MSE(D, f_2) = \frac{1}{n}\sum_{i=1}^{n} (y_i - f_2(x_i))^2$ **Trick:** $MSE(D, f_1) - MSE(D, f_2) = \frac{1}{n}\sum_{i=1}^{n} (y_i - f_1(x_i))^2 - \frac{1}{n}\sum_{i=1}^{n} (y_i - f_2(x_i))^2$

