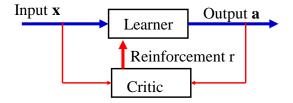
CS 1675 Introduction to Machine Learning Lecture 26

Reinforcement learning II

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Reinforcement learning

Basics:

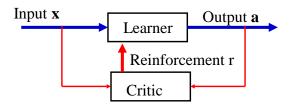


- Learner interacts with the environment
 - Receives input with information about the environment (e.g. from sensors)
 - Makes actions that (may) effect the environment
 - Receives a reinforcement signal that provides a feedback on how well it performed

Reinforcement learning

Objective: Learn how to act in the environment in order to maximize the reinforcement signal

- The selection of actions should depend on the input
- A policy $\pi: X \to A$ maps inputs to actions
- Goal: find the optimal policy $\pi: X \to A$ that gives the best expected reinforcements



Example: learn how to play games (AlphaGo)

Gambling example

- Game: 3 biased coins
 - The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of \$1. If after the coin toss, the outcome agrees with the bet, the agent wins \$1, otherwise it looses \$1
- RL model:
 - **Input:** X a coin chosen for the next toss,
 - Action: A choice of head or tail the agent bets on,
 - **Reinforcements:** {1, -1}
- A policy $\pi: X \to A$

Example: π : Coin1 \rightarrow head Coin2 \rightarrow tail Coin3 \rightarrow head

 $\pi: \bigoplus_{i \in \mathcal{A}} \longrightarrow \text{head}$ $\longrightarrow \text{tail}$ $\longrightarrow \text{head}$

Gambling example

RL model:

- **Input:** X a coin chosen for the next toss,
- Action: A choice of head or tail the agent bets on,
- **Reinforcements:** {1, -1}
- A policy π : $\begin{bmatrix} \text{Coin1} \rightarrow \textit{head} \\ \text{Coin2} \rightarrow \textit{tail} \\ \text{Coin3} & \textit{head} \end{bmatrix}$

State, action reward trajectories

RL learning: objective functions

• Objective: Find a policy

$$\pi^*: X \to A$$

$$\pi^*: \begin{vmatrix} \mathbf{Coin1} \rightarrow ? \\ \mathbf{Coin2} \rightarrow ? \\ \mathbf{Coin3} \rightarrow ? \end{vmatrix}$$

 $0 \le \gamma < 1$

That maximizes some combination of future reinforcements (rewards) received over time

- Valuation models (quantify how good the mapping is):
 - Finite horizon models

$$E(\sum_{t=0}^{T} r_t)$$

Time horizon: T > 0

$$E(\sum_{t=0}^{t=0} \gamma^t r_t)$$

Discount factor: $0 \le \gamma < 1$

Infinite horizon discounted model

$$r_t$$
) Discount factor:

$$\lim_{T\to\infty}\frac{1}{T}E(\sum_{t=0}^T r_t)$$

RL with immediate rewards

Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) \qquad 0 \le \gamma < 1$$

- Immediate reward case:
 - Reward depends only on x and the action choice
 - The action does not affect the environment and hence future inputs (states) and future rewards
 - Expected one step reward for input \mathbf{x} (coin to play next) and the choice $a: R(\mathbf{x}, a)$

RL with immediate rewards

• Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

• Optimal strategy:

$$\pi^* : X \to A$$

$$\pi^*(\mathbf{x}) = \underset{a}{\arg \max} R(\mathbf{x}, a)$$

 $R(\mathbf{x}, a)$: Expected one step reward for input \mathbf{x} (coin to play next) and the choice a

RL with immediate rewards

The optimal choice assumes we know the expected reward $R(\mathbf{x}, a)$

• Then: $\pi^*(\mathbf{x}) = \arg\max_a R(\mathbf{x}, a)$

Caveats

- We do not know the expected reward $R(\mathbf{x}, a)$
 - We need to estimate it using $\widetilde{R}(\mathbf{x}, a)$ from interaction
- We cannot determine the optimal policy if the estimate of the expected reward is not good
 - We need to try also actions that look suboptimal wrt the current estimates of $\widetilde{R}(\mathbf{x}, a)$

Estimating R(x,a)

- Solution 1:
 - For each input \mathbf{x} try different actions a
 - Estimate $R(\mathbf{x}, a)$ using the average of observed rewards

$$\widetilde{R}(\mathbf{x}, a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_i^{x,a}$$

- Solution 2: online approximation
- Updates an estimate after performing action a in x and observing the reward $r^{x,a}$

$$\widetilde{R}(\mathbf{x}, a)^{(i)} \leftarrow (1 - \alpha(i))\widetilde{R}(\mathbf{x}, a)^{(i-1)} + \alpha(i) r_i^{x, a}$$

 $\alpha(i)$ - a learning rate

RL with immediate rewards

• At any step in time *i* during the experiment we have estimates of expected rewards for each (*coin*, *action*) pair:

 $\widetilde{R}(coin1, head)^{(i)}$

 $\widetilde{R}(coin1, tail)^{(i)}$

 $\tilde{R}(coin2, head)^{(i)}$

 $\tilde{R}(coin2, tail)^{(i)}$

 $\tilde{R}(coin3, head)^{(i)}$

 $\widetilde{R}(coin3, tail)^{(i)}$

• Assume the next coin to play in step (i+1) is coin 2 and we pick head as our bet. Then we update $\widetilde{R}(coin2, head)^{(i+1)}$ using the observed reward and one of the update strategy above, and keep the reward estimates for the remaining (coin, action) pairs unchanged, e.g. $\widetilde{R}(coin2, tail)^{(i+1)} = \widetilde{R}(coin2, tail)^{(i)}$

Exploration vs. Exploitation

- Uniform exploration:
 - Uses exploration parameter $0 \le \varepsilon \le 1$
 - Choose the "current" best choice with probability $1-\varepsilon$

$$\hat{\pi}(\mathbf{x}) = \underset{a \in A}{\operatorname{arg\,max}} \ \widetilde{R}(\mathbf{x}, a)$$

- All other choices are selected with a uniform probability $\frac{\varepsilon}{\mid A \mid -}$

Advantages:

• Simple, easy to implement

Disadvantages:

- Exploration more appropriate at the beginning when we do not have good estimates of $\widetilde{R}(\mathbf{x}, a)$
- Exploitation more appropriate later when we have good estimates

Exploration vs. Exploitation

- Boltzman exploration
 - The action is chosen randomly but proportionally to its current expected reward estimate
 - Can be tuned with a temperature parameter T to promote exploration or exploitation
- Probability of choosing action a

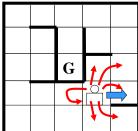
$$p(a \mid \mathbf{x}) = \frac{\exp\left[\widetilde{R}(x, a)/T\right]}{\sum_{a' \in A} \exp\left[\widetilde{R}(x, a')/T\right]}$$

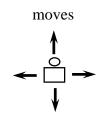
- Effect of T:
 - For high values of T, $p(a \mid x)$ is uniformly distributed for all actions
 - For low values of T, $p(a \mid x)$ of the action with the highest value of $\widetilde{R}(\mathbf{x}, a)$ is approaching 1

Agent navigation example

• Agent navigation in the maze:

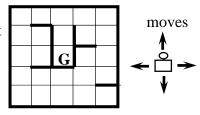
- 4 moves in compass directions
- Effects of moves are stochastic we may wind up in other than intended location with a non-zero probability
- Objective: learn how to reach the goal state in the shortest expected time





Agent navigation example

- The RL model:
 - **Input:** X − a position of an agent
 - Output: A –the next move
 - Reinforcements: R
 - -1 for each move
 - +100 for reaching the goal
 - A policy: $\pi: X \to A$



- $\pi: \begin{array}{|c|c|c|c|c|}\hline \text{Position } 1 & \rightarrow \textit{right} \\\hline \text{Position } 2 & \rightarrow \textit{right} \\\hline \dots \\\hline \text{Position } 25 & \rightarrow \textit{left} \\\hline \end{array}$
- Goal: find the policy maximizing future expected rewards

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

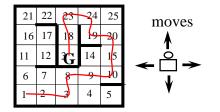
$$0 \le \gamma < 1$$

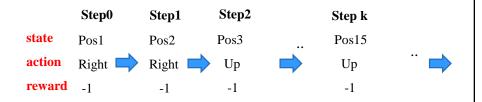
Agent navigation example

State, action reward trajectories

policy

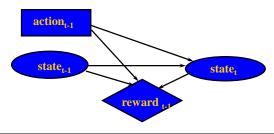
$$\pi: \begin{array}{|c|c|c|c|c|}\hline \text{Position } 1 & \rightarrow \textit{right} \\\hline \text{Position } 2 & \rightarrow \textit{right} \\\hline \dots \\\hline \text{Position } 25 & \rightarrow \textit{left} \\\hline \end{array}$$

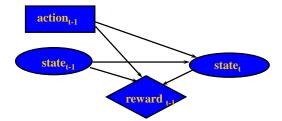




Learning with delayed rewards

- Actions, in addition to immediate rewards affect the next state of the environment and thus indirectly also future rewards
- We need a model to represent environment changes and the the effect of actions on states and rewards associated with them
- Markov decision process (MDP)
 - Frequently used in AI, OR, control theory





Formal definition:

4-tuple (S, A, T, R)

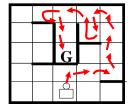
• A set of states S (X)	locations of a robot
• A set of actions A	move actions
• Transition model $S \times A \times S \rightarrow [0,1]$	where can I get with different moves
• Reward model $S \times A \times S \rightarrow \Re$	reward/cost for a transition

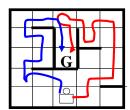
MDP problem

- We want to find the best policy $\pi^*: S \to A$
- **Value function** (V) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

- $E(\sum_{t=0}^{\infty} \gamma^{t} r_{t})$ It: 1. combines future rewards over a trajectory
 - 2. combines rewards for multiple trajectories (through expectation-based measures)





Value of a policy for MDP

- Assume a fixed policy $\pi: S \to A$
- How to compute the value of a policy under infinite horizon discounted model?

A fixed point equation:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')$$
 expected one step expected discounted reward for following the policy for the rest of the steps

expected discounted reward for following the policy for the rest of the steps

$$\mathbf{v} = \mathbf{r} + \mathbf{U}\mathbf{v}$$
 $\mathbf{v} = (\mathbf{I} - \mathbf{U})^{-1}\mathbf{r}$

- For a finite state space- we get a set of linear equations

Optimal policy

• The value of the optimal policy

$$V^{*}(s) = \max_{a \in A} \left[\underbrace{R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{*}(s')}_{} \right]$$

expected one step expected discounted reward for following reward for the first action the opt. policy for the rest of the steps

• The optimal policy: $\pi^*: S \to A$

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \right]$$

Computing optimal policy

Dynamic programming: Value iteration:

- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

Value iteration (ε)

initialize V ;; V is vector of values for all states repeat

Reinforcement learning of optimal policies

- In the RL framework we do not know the MDP model !!!
- Goal: learn the optimal policy

$$\pi^*: S \to A$$

- Two basic approaches:
 - Model based learning
 - Learn the MDP model (probabilities, rewards) first
 - Solve the MDP afterwards
 - Model-free learning
 - Learn how to act directly
 - No need to learn the parameters of the MDP
 - A number of clones of the two in the literature

Model-based learning

- We need to learn transition probabilities and rewards
- Learning of probabilities
 - ML parameter estimates
 - Use counts $\widetilde{P}(s'|s,a) = \frac{N_{s,a,s'}}{N_{s,a}}$ $N_{s,a} = \sum_{s' \in S} N_{s,a,s'}$
- Learning rewards
 - Similar to learning with immediate rewards

$$\widetilde{R}(s,a) = \frac{1}{N_{s,a}} \sum_{i=1}^{N_{s,a}} r_i^{s,a}$$
 or the online solution

 Problem: changes in the probabilities and reward estimates would require us to solve an MDP from scratch! (after every action and reward seen)

Model free learning

• Motivation: value function update (value iteration):

$$V^*(s) \leftarrow \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \right]$$

• Let

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{*}(s')$$

- Then $V^*(s) \leftarrow \max_{a \in A} Q(s, a)$
- Note that the update can be defined purely in terms of Qfunctions

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

Q-learning

- Q-learning uses the Q-value update idea
 - But relies on a stochastic (on-line, sample by sample) update

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

is replaced with

$$\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')\right)$$

r(s,a) - reward received from the environment after performing an action a in state s

s' - new state reached after action a

lpha - learning rate, a function of $N_{s,a}$

- a number of times a has been executed at s

Q-function updates in Q-learning

 At any step in time i during the experiment we have estimates of Q functions for each (state, action) pair:

```
egin{aligned} \widetilde{Q}(\textit{position1},\textit{up})^{(i)} \ \widetilde{Q}(\textit{position1},\textit{left})^{(i)} \ \widetilde{Q}(\textit{position1},\textit{right})^{(i)} \ \widetilde{Q}(\textit{position1},\textit{down})^{(i)} \ \widetilde{Q}(\textit{position2},\textit{up})^{(i)} \end{aligned}
```

• • •

- Assume the current state is *position* 1 and we pick *up* action to be performed next.
- After we observe the reward, we update $\widetilde{Q}(position1, up)$, and keep the Q function estimates for the remaining (state, action) pairs unchanged.

Q-learning

The on-line update rule is applied repeatedly during the direct interaction with an environment

```
Q-learning
initialize Q(s,a) = 0 for all s,a pairs
observe current state s
repeat
select action a; use some exploration/exploitation schedule
receive reward r
observe next state s'
update Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)
set s to s'
end repeat
```

Q-learning convergence

The **Q-learning is guaranteed to converge** to the optimal Qvalues under the following conditions:

- Every state is visited and every action in that state is tried infinite number of times
 - This is assured via exploration/exploitation schedule
- The sequence of learning rates for each Q(s,a) satisfies:

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty$$

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty$$
 2.
$$\sum_{i=1}^{\infty} \alpha(i)^{2} < \infty$$

 $\alpha(n(s,a))$ - is the learning rate for the *n*th trial of (s,a)

RL with delayed rewards

The optimal choice

$$\pi^*(\mathbf{s}) = \arg\max Q(s, a)$$

much like what we had for the immediate rewards

$$\pi^*(\mathbf{x}) = \arg\max R(\mathbf{x}, a)$$

RL Learning

• Instead of exact values of $Q(\mathbf{s}, a)$ we use $\hat{Q}(\mathbf{s}, a)$

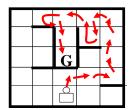
$$\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')\right)$$

- Since we have only estimates of $\hat{Q}(\mathbf{s}, a)$
 - We need to try also actions that look suboptimal wrt the current estimates
 - Exploration/exploitation strategies
 - Uniform exploration
 - Boltzman exploration

Q-learning speed-ups

The basic Q-learning rule updates may propagate distant (delayed) rewards very slowly

Example:



- Goal: a high reward state
- To make the correct decision we need all Q-values for the current position to be good
- **Problem:**
 - in each run we back-propagate values only 'one-step' back. It takes multiple trials to back-propagate values multiple steps.

Q-learning speed-ups

Remedy: Backup values for a larger number of steps

Rewards from applying the policy
$$q_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

We can substitute (immediate rewards with n-step rewards):

$$q_{t}^{n} = \sum_{i=0}^{n} \gamma^{i} r_{t+i} + \gamma^{n+1} \max_{a'} Q_{t+n}(s', a')$$

Postpone the update for *n* steps and update with a longer trajectory rewards

$$Q_{t+n+1}(s,a) \leftarrow Q_{t+n}(s,a) + \alpha \left(q_t^n - Q_{t+n}(s,a)\right)$$

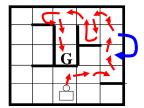
Problems: - larger variance

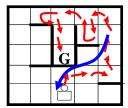
- exploration/exploitation switching

- wait n steps to update

Q-learning speed-ups

• One step vs. n-step backup



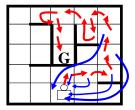


Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

- Temporal difference (TD) method
 - Remedy of the wait n-steps problem
 - Partial back-up after every simulation step
 - Similar idea: weather forecast adjustment



Different versions of this idea has been implemented

RL successes

- Reinforcement learning is relatively simple
 - On-line techniques can track non-stationary environments and adapt to its changes
- Successful applications:
 - Deep Mind's AlphaGo (Alpha Zero)
 - TD Gammon learned to play backgammon on the championship level
 - Elevator control
 - Dynamic channel allocation in mobile telephony
 - Robot navigation in the environment

