
1

CS 2750 Machine Learning

Lecture 24

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Reinforcement learning

Reinforcement learning

Basics:

• Learner interacts with the environment

– Receives input with information about the environment (e.g.

from sensors)

– Makes actions that (may) effect the environment

– Receives a reinforcement signal that provides a feedback on

how well it performed

Learner
Input x Output a

Critic

Reinforcement r

mailto:milos@cs.pitt.educ

2

Reinforcement learning

Objective: Learn how to act in the environment in order to

maximize the reinforcement signal

• The selection of actions should depend on the input

• A policy maps inputs to actions

• Goal: find the optimal policy that gives the best

expected reinforcements

Example: learn how to play games (AlphaGo)

Learner
Input x Output a

Critic

Reinforcement r

AX :

AX :

Gambling example

• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three

coin options. The agent always sees which coin is going to be

played next. The agent makes a bet on either a head or a tail

with a wage of $1. If after the coin toss, the outcome agrees

with the bet, the agent wins $1, otherwise it looses $1

• RL model:

– Input: X – a coin chosen for the next toss,

– Action: A – choice of head or tail the agent bets on,

– Reinforcements: {1, -1}

• A policy

Example:

AX :
Coin1 head

Coin2 tail

Coin3 head

:

1

2

3

head

tail

head

:

1 2 3

3

Gambling example

RL model:

• Input: X – a coin chosen for the next toss,

• Action: A – choice of head or tail the agent bets on,

• Reinforcements: {1, -1}

• A policy

State, action reward trajectories

Coin1 head

Coin2 tail

Coin3 head

:

Coin2

Tail

-1

Coin1

Head

1

Step0 Step1

Coin2

Tail

1

Step2

Coin1

Head

1

Step k

..
..

state

action

reward

Gambling example

Learning goal: find the optimal policy

maximizing future expected rewards

)(
0

T

t

t

trE

a discount factor = present value of money

AX :*

Coin1 ?

Coin2 ?

Coin3 ?

:*

10

1

2

3

?

?

?

:*

4

Expected rewards

• Expected rewards for AX :

)(
0

T

t

trE

Run 1

Run 2

Run 3

…

time

time

time

Expectation over many possible reward trajectories

defined by AX :

Expected discounted rewards

• Expected discounting rewards for

• Discounting with (future value of money)

No discounting:

Discounting

AX :

)(
0

T

t

t

trE

Run 1

time

Expectation over many possible discounted

reward trajectories for AX :

10

Run 1

time

5

RL learning: objective functions

• Objective:

Find a policy

That maximizes some combination of future reinforcements

(rewards) received over time

• Valuation models (quantify how good the mapping is):

– Finite horizon models

– Infinite horizon discounted model

– Average reward

)(
0

T

t

trE

)(
0

t

t

trE Discount factor:

)(
1

lim
0

T

t

t
T

rE
T

0TTime horizon:

AX :*

10

)(
0

T

t

t

trE Discount factor: 10

Agent navigation example

• Agent navigation in the maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other

than intended location with a non-zero probability

– Objective: learn how to reach the goal state in the shortest

expected time

moves

G

6

Agent navigation example

• The RL model:

– Input: X – a position of an agent

– Output: A –the next move

– Reinforcements: R

• -1 for each move

• +100 for reaching the goal

– A policy:

• Goal: find the policy maximizing future expected rewards

moves

G

AX :

)(
0

t

t

trE

Position 1 right

Position 2 right

…

Position 25 left

:

10

Agent navigation example

State, action reward trajectories

• policy

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

..
..

state

action

reward

Position 1 right

Position 2 right

…

Position 25 left

:
moves

G

1 2 3 4 5

6 7 8 9 10

11 12 3 14 15

16 17 18 19 20

21 22 23 24 25

7

Effects of actions on the environment

Effect of actions on the environment

– More specifically on the next input x to be seen

Case 1. No effect. The distribution over possible x is independent

of past actions. The rewards received depend only on the current

state x and the action a chosen.

• Reinforcement learning with immediate rewards

– 3 coin example

What coin we see next is not affected by our previous

action, hence our action does not effect future rewards

1 2 3

Coin2

Tail

-1

Coin1

Head

1

Step0 Step1

Coin2

Tail

1

Step2

Coin1

Head

1

Step k

..
..

state

action

reward

X X X X

Effects of actions on the environment

Effect of actions on the environment

– More specifically on the next input x to be seen

Case 2. Actions may effect the environment and next inputs x.

The distribution of x can change due to past actions; the rewards

related to the action can be seen with some delay.

• Learning with delayed rewards

– Agent navigation example; a move action effects next

position, and hence more distant future rewards

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

..
..

state

action

reward

8

RL with immediate rewards

• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three coin

options. The agent always sees which coin is going to be played

next. The agent makes a bet on either a head or a tail with a wage

of $1. If after the coin toss, the outcome agrees with the bet, the

agent wins $1, otherwise it looses $1

• RL model:

– Input: X – a coin chosen for the next toss

– Action: A – head or tail the agent bets on

– Reinforcements: {1, -1} ($1 either won or lost)

• Learning goal: find the optimal policy

maximizing the future expected profits over time

)(
0

t

t

trE
a discount factor

AX :*

10

1 2 3

RL with immediate rewards

• Expected reward

• Immediate reward case:

– Reward depends only on x and the action choice

– The action does not affect the environment and hence future

inputs (states) and future rewards:

)(
0

t

t

trE

...)(...)()()()(,2,2

2

1,10,0

0

akxk

k

axaxax

t

t

t rErErErErE

10

x0

a0

rx0,a0

Step0 Step1 Step2 Step k

.. ..

state

action

Reward

X X X X
x1

a1

rx1,a1

x2

a2

rx2,a2

xk

ak

rxk,ak

...)(...)()()(,2,2

2

1,10,0 akxk

k

axaxax rErErErE

General

Trajectory

9

RL with immediate rewards

Immediate reward case:

• Reward for input x and the action choice a may vary

• Expected one-step reward for the input x and action a:

– For the coin bet problem it is:

• Expected one step reward for a policy

),|(),|(),(ij

j

iji aParaR xxx
j

)(),(,arEaR xx

AX :

: an outcome of the coin toss x

),|(xij ar : reward for an outcome and the bet made on x

)())(,()(, xrExR xx

RL with immediate rewards

• Expected reward

• Optimizing the expected reward :

• Optimal strategy: AX :*

),(maxarg)(* aR
a

xx

...)(...)()()()(,2,2

2

1,10,0

0

akxk

k

axaxax

t

t

t rErErErErE

...)(...)()()(,2,2

2

1,10,0 akxk

k

axaxax rErErErE

...)(max...)(max)(max)(max ,1,10,0

0

akxk

k

axax

t

t

t rErErErE

...)(max...)(max)(max ,1,10,0 akxk

k

axax rErErE

...),(max...),(max),(max 1100
10

 kk
a

k

aa
axRaxRaxR

k

10

RL with immediate rewards

The optimal choice assumes we know the expected reward

• Then:

Caveats

• We do not know the expected reward

– We need to estimate it using from interaction

• We cannot determine the optimal policy if the estimate of

the expected reward is not good

– We need to try also actions that look suboptimal wrt the

current estimates of

),(aR x

),(maxarg)(* aR
a

xx

),(aR x

),(
~

aR x

),(
~

aR x

RL with immediate rewards

• Problem: In the RL framework we do not know

– The expected reward for performing action a at input x

• Solution:

– For each input x try different actions a

– Estimate using the average of observed rewards

– Action choice

– Accuracy of the estimate: statistics (Hoeffding’s bound)

– Number of samples:

axN

i

ax

i

ax

r
N

aR
,

1

,

,

1
),(

~
x

),(
~

maxarg)(aR
a

xx

2

minmax

,

2

)(

2
exp),(),(

~

rr

N
aRaRP

ax
xx

1
ln

2

)(
2

2

minmax
,

rr
N ax

),(aR x

),(aR x

11

RL with immediate rewards

• On-line (stochastic approximation)

– An alternative way to estimate

• Idea:

– choose action a for input x and observe a reward

– Update an estimate in every step i

• Convergence property: The approximation converges in the

limit for an appropriate learning rate schedule.

• Assume:

• Then the converge is assured if:

),(aR x

)(i
ax

i

ii riaRiaR
,)1()()(),(

~
))(1(),(

~

xx

axr ,

- a learning rate

)),((axn - is a learning rate for nth trial of (x,a) pair

)(
1

i
i

2

1

)(i
i

1. 2.

RL with immediate rewards

• At any step in time i during the experiment we have estimates of

expected rewards for each (coin, action) pair:

• Assume the next coin to play in step (i+1) is coin 2 and we pick

head as our bet. Then we update using the

observed reward and one of the update strategy above, and keep

the reward estimates for the remaining (coin, action) pairs

unchanged, e.g.

)(),1(
~ iheadcoinR

)(),1(
~ itailcoinR

)(),2(
~ iheadcoinR

)(),2(
~ itailcoinR

)(),3(
~ iheadcoinR

)(),3(
~ itailcoinR

)1(),2(
~ iheadcoinR

)()1(),2(
~

),2(
~ ii tailcoinRtailcoinR

12

Exploration vs. Exploitation in RL

The (learner) actively interacts with the environment via actions:

• At the beginning the learner does not know anything about the
environment

• It gradually gains the experience and learns how to react to the
environment

Dilemma (exploration-exploitation):

• After some number of steps, should I select the best current
choice (exploitation) or try to learn more about the
environment (exploration)?

• Exploitation may involve the selection of a sub-optimal
action and prevent the learning of the optimal choice

• Exploration may spend to much time on trying bad currently
suboptimal actions

Exploration vs. Exploitation

• In the RL framework

– the (learner) actively interacts with the environment and

choses the action to play for the current input x

– Also at any point in time it has an estimate of for

any (input,action) pair

• Dilemma for choosing the action to play for x:

– Should the learner choose the current best choice of action

(exploitation)

– Or choose some other action a which may help to improve

its estimate (exploration)

This dilemma is called exploration/exploitation dilemma

• Different exploration/exploitation strategies exist

),(
~

aR x

),(
~

maxarg)(ˆ aR
Aa

xx

),(
~

aR x

13

Exploration vs. Exploitation

• Uniform exploration:

– Uses exploration parameter

– Choose the “current” best choice with probability

– All other choices are selected with

a uniform probability

Advantages:

• Simple, easy to implement

Disadvantages:

• Exploration more appropriate at the beginning when we do not

have good estimates of

• Exploitation more appropriate later when we have good estimates

),(
~

maxarg)(ˆ aR
Aa

xx

1

1|| A

10

),(
~

aR x

Exploration vs. Exploitation

• Boltzman exploration

– The action is chosen randomly but proportionally to its

current expected reward estimate

– Can be tuned with a temperature parameter T to promote

exploration or exploitation

• Probability of choosing action a

• Effect of T:

– For high values of T, p(a | x) is uniformly distributed for

all actions

– For low values of T, p(a | x) of the action with the highest

value of is approaching 1

Aa

TaxR

TaxR
ap

'

/)',(
~

exp

/),(
~

exp
)|(x

),(
~

aR x

