CS 1675 Introduction to Machine Learning
Lecture 24

Learning with multiple models.
Boosting.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning with multiple models

» Motivation:

— Can we get a better classification performance by
combining multiple classification models?

mailto:milos@cs.pitt.educ

Learning with multiple models: Approach 2

« Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combine their outputs

» Committee machines:
— Combine predictions of all models to produce the output
— Regression: averaging
— Classification: a majority vote
— Goal: Improve the accuracy of the ‘base’ model

» Methods:
 Bagging (the same base models)
« Boosting (the same base models)
« Stacking (different base model) not covered

Bagging algorithm

» Training
* For each model M1, M2, ... Mk

» Randomly sample with replacement N samples from the
training set (bootstrap)

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples
Data

N

Data 1 Data 2 ‘/ bootstrap Data k

Model M1 Model M2 Model Mk

Bagging algorithm

« Training
* For each model M1, M2, ... Mk

« Randomly sample with replacement N samples from the
training set

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

e Test
— For each test example
* Run all base models M1, M2, ... Mk
* Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote

When Bagging works

« Main property of Bagging (proof omitted)
— Bagging decreases variance of the base model without
changing the bias!!!
— Why? averaging!
« Bagging typically helps
— When applied with an over-fitted base model
« High dependency on actual training data
« Example: fully grown decision trees
It does not help much

— High bias. When the base model is robust to the
changes in the training data (due to sampling)

Boosting

« Bagging
— Multiple models covering the complete space, a learner is
not biased to any region
— Learners are learned independently

« Boosting
— Every learner covers the complete space

— Learners are biased to regions not predicted well by other
learners

— Learners are dependent

Boosting

* Motivation:

— Can we get a better classification performance by
combining multiple classification models

Boosting. Theoretical foundations.

« PAC: Probably Approximately Correct framework
— (&,8) solution
« PAC learning:

— Learning with a pre-specified error g and a confidence
parameter 8

— the probability that the misclassification error (ME) is
larger than ¢ is smaller than &

P(IME(c)>&) <o
Alternative rewrite:
P(Acc(c) >1—¢&)>1—-9)
» Accuracy (1-g): Percent of correctly classified samples in test

» Confidence (1-8): The probability that in one experiment
some target accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

« There exists a learning algorithm that efficiently learns the
classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm P that
« Given an arbitrary:
— classification error ¢ (< 1/2), and
— confidence & (<1/2)
or in other words:
« classification accuracy > (1-¢)
« confidence probability > (1- 8)
« Outputs a classifier that satisfies this parameters
« Efficiency: runsin time polynomial in 1/ 8, 1/
— Implies: number of samples N is polynomial in 1/ 3, 1/

Weak Learner

Weak learner:
A learning algorithm (learner) M that gives some fixed (not

arbitrary !111):

— error g, (<1/2) and

— confidence 9§, (<1/2)
 Alternatively:

— a classification accuracy > 0.5

— with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

« Assume there exists a weak learner

— it is better that a random guess (> 50 %) with confidence
higher than 50 % on any data distribution

* Question:
— Is the problem also strongly PAC-learnable?
— Can we generate an algorithm P that achieves an arbitrary
(€,0) accuracy?
* Why is this important?
— Usual classification methods (decision trees, neural nets),
have good, but uncontrollable performances.

— Can we improve their performance to achieve any pre-
specified accuracy (confidence)?

Weak=Strong learnability!!!

» Proof due to R. Schapire
An arbitrary (g,8) improvement is possible

Idea: combine multiple weak learners together
— Weak learner W with confidence 3, and maximal error g,
— It is possible:
« To improve (boost) the confidence
« To improve (boost) the accuracy

by training different weak learners on slightly different
datasets

Boosting accuracy

Training
Distribution of examples Learners
Hl
HZ
H3

- Correct classification
- Wrong classification

\ H; and H, classify differently

Boosting accuracy

Training
— Sample randomly from the distribution of examples
— Train hypothesis H; on the sample
— Evaluate accuracy of H, on the distribution

— Sample randomly such that for the half of samples H;
provides correct, and for another half, incorrect results;
Train hypothesis H,.

— Train H; on samples from the distribution where H; and
H, classify differently

Test

— For each example, decide according to the majority vote
of H;, H, and H,4

Theorem

If each classifier has an error < &, the final ‘voting’
classifier has error < g(e,) =3 g,>- 2,3

Accuracy improved !!!
Apply recursively to get to the target accuracy !!!

0.s

0.45 -

0.4

035

03

0.25 -

0z2r

015 -

o1F

0.05 -

u}

Theoretical Boosting algorithm

Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

The key result: we can improve both the accuracy and
confidence

Problems with the theoretical algorithm

— A good (better than 50 %) classifier on all distributions and
problems

— We cannot get a good sample from data-distribution
— The method requires a large training set
Solution to the sampling problem:
— Boosting by sampling
« AdaBoost algorithm (Freund, Schapire; 1996)

Data distribution

Dataset D

+ each instance in the data is assigned a probability with which
it is selected

» Example:

D 0.003
0.0025
0.0082

0.004

Trainin
data

AdaBoost training

Data Distribution

Uniform distribution D, of training examples

P(example i) = 1/N

Trainin
data

AdaBoost training

Data Distribution Learn

Model 1

Sample randomly according to D,
And train Model 1

10

AdaBoost training

Data distribution Learn Test

Training |—.—D
data Model 1 Errors 1

Test Model 1 and calculate errors

AdaBoost training

Data distribution Learn Test

Training ’—-.—D
data Model 1 Errors 1

Use errors to recalculate the new distribution on data
Give more probability to pick examples with errors

11

AdaBoost training

Data distribution Learn Test

Training |—.—D
data Model 1 Errors 1

Model 2
el

Errors 2

|

:DT

—

Model T ’_> Errors T

AdaBoost
+ Given:
— A training set of N examples (attributes + class label pairs)

— A “base” learning model (e.g. a decision tree, a neural
network)

+ Training stage:
— Train a sequence of 7 “base” models on T different sampling
distributions defined upon the training set (D)

— A sample distribution D, for building the model t is
constructed by modifying the sampling distribution D, ; from
the (t-1)th step.

« Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

+ Application (classification) stage:
— Classify according to the weighted majority of classifiers

12

AdaBoost algorithm

Training (step t)
« Sampling Distribution D,
D, (i) - a probability that example i from the original
training dataset is selected
D, (i) =1/ N for the first step (t=1)
- Take K samples from the training set according to D,
+ Train a classifier h, on the samples
- Calculate the error &, of h;: &= >.D.()
+ Classifier weight: 8, = g, /(1—&,) V™
* New sampling distribution
D, ., (i) = D, (i) - {/Bt ht (Xi) =_ Yi
z 1 otherwise

Norm. constant

t

AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification
- NN used as a week learner

Iteration:1 heratmn:Z...

[— o
[= o

[

Sampling probability
Sampling probahility

SRS
bocsusnie,
foous Sots
o

o

13

AdaBoost: Sampling Probabilities

leration: 10

Iteration:

o
o

.
=

ng probability
o

=)

ng probability
oy

[

"t,‘

Sarmpli
Sampli

__
)

-4

AdaBoost classification

We have T different classifiers h ,

— weight w, of the classifier is proportional to its accuracy on
the training set

w, =log(1/) =log(A— &)/ &)
L= 1A—¢g)
Classification:
For every class j=0,1

« Compute the sum of weights w corresponding to ALL
classifiers that predict class j;

* Output class that correspond to the maximal sum of
weights (weighted majority)

Pfinai (X) = arg max oW,

J t:hy (x)=]

14

Two-Class example. Classification.

* Classifier 1 “yes” 0.7
e C(lassifier 2 “no” 0.3
e C(lassifier 3 “no” 0.2
* Weighted majority “yes” I
0.7 -05= +0.2

* The final choice is “yes” + 1

What is boosting doing?

Each classifier specializes on a particular subset of examples

Algorithm is concentrating on “more and more difficult”
examples

Boosting can:

— Reduce variance (the same as Bagging)

— Eliminate the effect of high bias of the weak learner (unlike
Bagging)

Train versus test errors performance:

— Train errors can be driven close to 0

— But test errors do not show overfitting

Proofs and theoretical explanations in a number of papers

15

Boosting. Error performances

0.4 T T T T T . .
“A\ —— Training error
J““‘ —— Test error
0.35~ | —— Single-learner error
T A o
0.25~ i
0.2 B
015~ i
\/\,\V]
0.1 -
0.05 i
0 r
[2 4 6 8 10 12 14 16

16

