CS 1675 Introduction to Machine Learning Lecture 24

Learning with multiple models. Boosting.

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Learning with multiple models

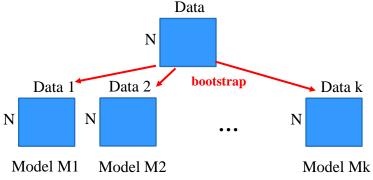
- Motivation:
 - Can we get a better classification performance by combining multiple classification models?

Learning with multiple models: Approach 2

- Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs
- Committee machines:
 - Combine predictions of all models to produce the output
 - **Regression:** averaging
 - Classification: a majority vote
 - Goal: Improve the accuracy of the 'base' model
- Methods:
 - Bagging (the same base models)
 - Boosting (the same base models)
 - Stacking (different base model) not covered

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set (bootstrap)
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples



Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - Classification: a majority vote

When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an over-fitted base model
 - High dependency on actual training data
 - Example: fully grown decision trees
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

Bagging

- Multiple models covering the complete space, a learner is not biased to any region
- Learners are learned independently

Boosting

- Every learner covers the complete space
- Learners are biased to regions not predicted well by other learners
- Learners are dependent

Boosting

• Motivation:

 Can we get a better classification performance by combining multiple classification models

Boosting. Theoretical foundations.

- PAC: Probably Approximately Correct framework
 - (ε , δ) solution
- PAC learning:
 - Learning with a pre-specified error ε and a confidence parameter δ
 - the probability that the misclassification error (ME) is larger than ϵ is smaller than δ

$$P(ME(c) > \varepsilon) \le \delta$$

Alternative rewrite:

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

- Accuracy (1-ε): Percent of correctly classified samples in test
- Confidence $(1-\delta)$: The probability that in one experiment some target accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **error and confidence values**

Strong (PAC) learner: A learning algorithm *P* that

- Given an arbitrary:
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)

or in other words:

- classification accuracy $> (1-\varepsilon)$
- confidence probability $> (1-\delta)$
- Outputs a classifier that satisfies this parameters
- Efficiency: runs in time polynomial in $1/\delta$, $1/\epsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

Weak Learner

Weak learner:

- A learning algorithm (learner) *M* that gives **some fixed** (**not arbitrary** !!!!):
 - error ε_0 (<1/2) and
 - confidence δ_0 (<1/2)
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (> 50 %) with confidence higher than 50 % on any data distribution
- Question:
 - Is the problem also strongly PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε, δ) accuracy?
- Why is this important?
 - Usual classification methods (decision trees, neural nets), have good, but <u>uncontrollable</u> performances.
 - Can we improve their performance to achieve any prespecified accuracy (confidence)?

Weak=Strong learnability!!!

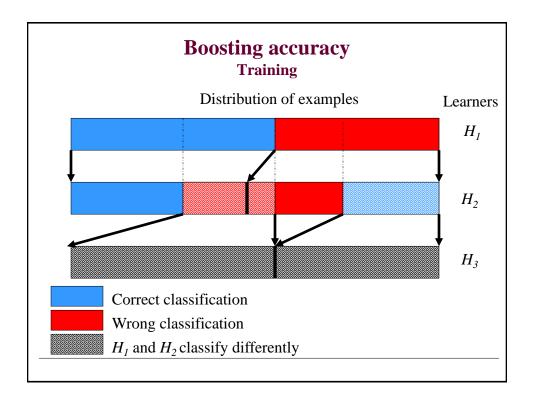
• Proof due to R. Schapire

An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together

- Weak learner W with confidence δ_0 and maximal error ϵ_0
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets



Boosting accuracy

Training

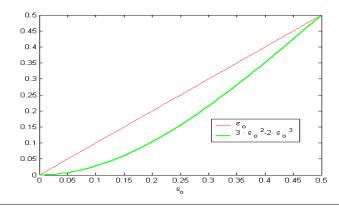
- Sample randomly from the distribution of examples
- Train hypothesis H_1 on the sample
- Evaluate accuracy of H_1 on the distribution
- Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2 .
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently

Test

 For each example, decide according to the majority vote of H₁, H₂ and H₃

Theorem

- If each classifier has an error $< \varepsilon_o$, the final 'voting' classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!



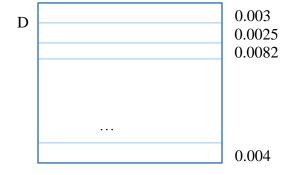
Theoretical Boosting algorithm

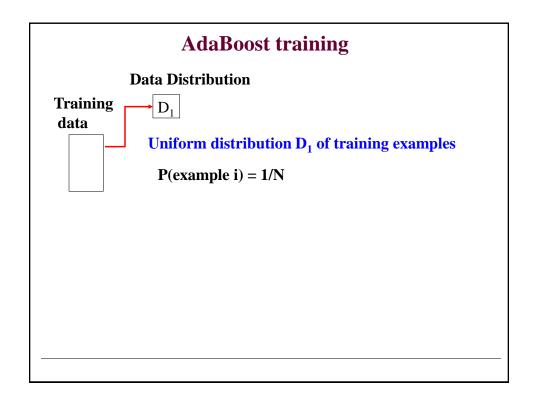
- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence
- · Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm (Freund, Schapire; 1996)

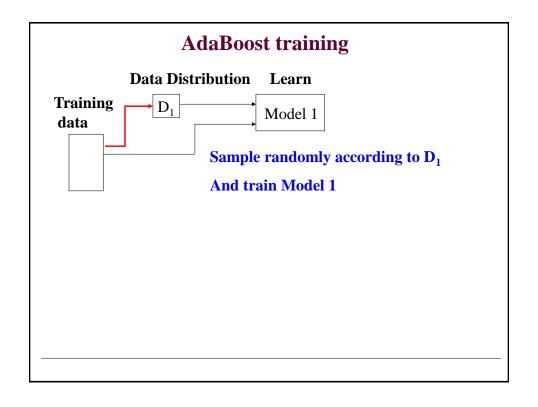
Data distribution

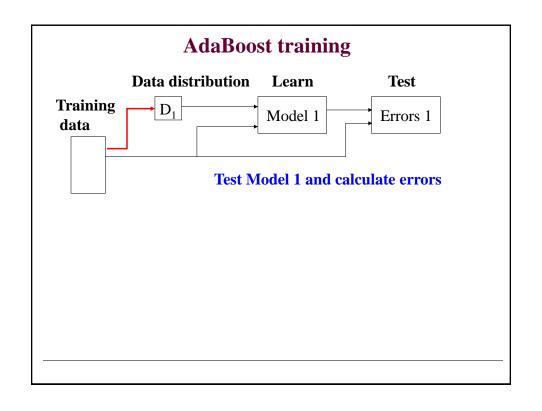
Dataset D

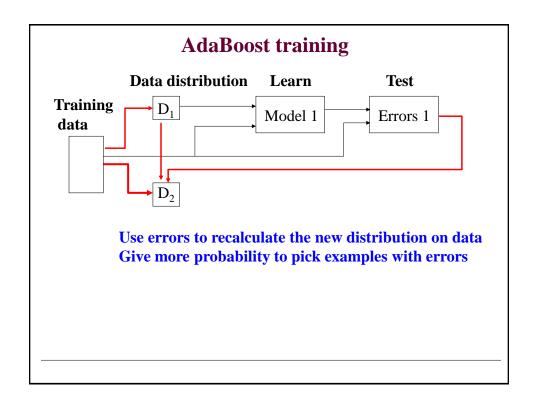
- each instance in the data is assigned a probability with which it is selected
- Example:

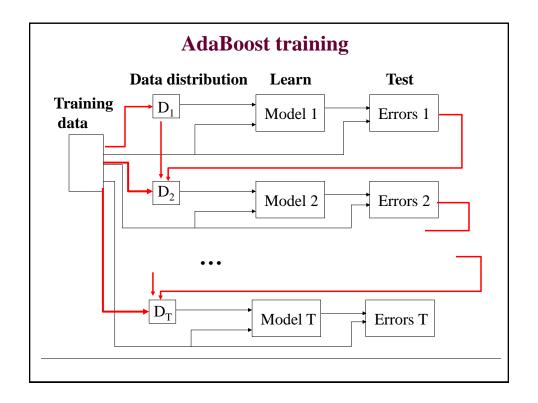












AdaBoost

• Given:

- A training set of N examples (attributes + class label pairs)
- A "base" learning model (e.g. a decision tree, a neural network)

• Training stage:

- Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
- A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

• Application (classification) stage:

Classify according to the weighted majority of classifiers

AdaBoost algorithm

Training (step t)

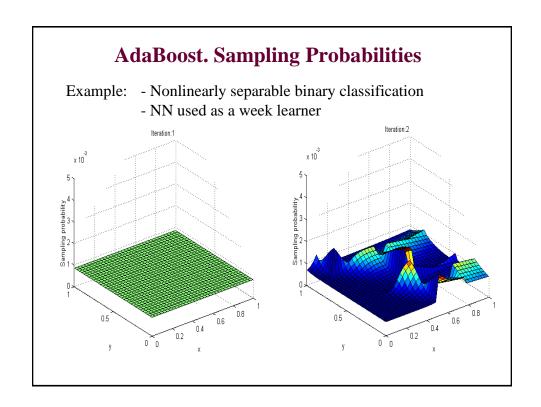
- Sampling Distribution D_{t}
 - $D_{t}(i)$ a probability that example i from the original training dataset is selected

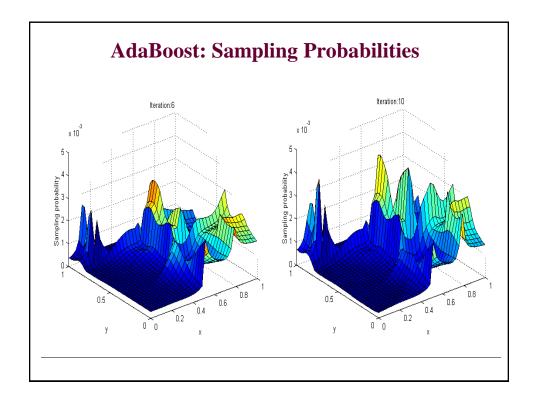
$$D_1(i) = 1/N$$
 for the first step (t=1)

- Take K samples from the training set according to D_{t}
- Train a classifier h, on the samples
- Calculate the error ε_t of \mathbf{h}_t : $\varepsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$ Classifier weight: $\beta_t = \varepsilon_t / (1 \varepsilon_t)^{i:h_t(x_i)\neq y_i}$
- New sampling distribution

$$D_{t+1}(i) = \frac{D_{t}(i)}{Z_{t}} \times \begin{cases} \beta_{t} & h_{t}(x_{i}) = y_{i} \\ 1 & \text{otherwise} \end{cases}$$

Norm. constant





AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_{t} = \log(1/\beta_{t}) = \log((1-\varepsilon_{t})/\varepsilon_{t})$$
$$\beta_{t} = \varepsilon_{t}/(1-\varepsilon_{t})$$

• Classification:

For every class j=0,1

- Compute the sum of weights w corresponding to ALL classifiers that predict class j;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \underset{j}{\operatorname{arg max}} \sum_{t: h_t(x) = j} w_t$$

Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2
- Weighted majority "yes" 0.7 0.5 = +0.2
- The final choice is "yes" + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- Boosting can:
 - Reduce variance (the same as Bagging)
 - Eliminate the effect of high bias of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers

