CS 1675 Introduction to Machine Learning Lecture 23

Learning with multiple models Mixture of experts, Bagging

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Learning with multiple models

We know how to build different classification or regression models from data

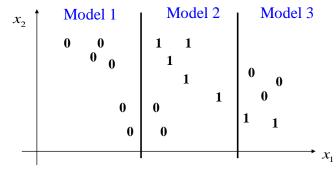
- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- Answer: yes
- There are different ways of how to do it...

Learning with multiple models

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- There are different ways of how to do it...
- Assume you have models M1, M2, ... Mk
- Approach 1: use different models (classifiers, regressors) to cover the different parts of the input (x) space
- Approach 2: use different models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 1

- Recall the decision tree:
 - It partitions the input space to regions
 - picks the class independently
- What if we define a more general partitions of the input space and learn a model specific to these partitions

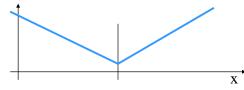


Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn a model specific to these partitions

Example:

• 2 linear functions covering two regions of the input space

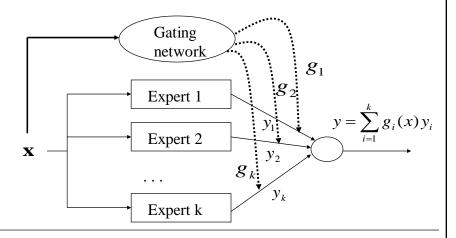


Mixture of expert model:

- Expert = learner (model)
- Different input regions covered with a different learner/model
- A "soft" switching between learners

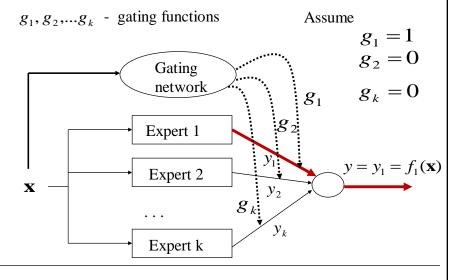
Mixture of experts model

Gating network: decides what expert to use
 g₁, g₂,...g_k - gating functions



Mixture of experts model

• Gating network: decides what expert to use



Learning mixture of experts

- Learning consists of two tasks:
 - Learn the parameters of individual expert networks
 - Learn the parameters of the gating (switching) network
 - · Decides where to make a split
- Assume: gating functions give probabilities

$$0 \le g_1(\mathbf{x}), g_2(\mathbf{x}), \dots g_k(\mathbf{x}) \le 1$$

$$y = \sum_{u=1}^k g_u(\mathbf{x}) f_u(\mathbf{x})$$

$$\sum_{u=1}^k g_u(\mathbf{x}) = 1$$

- Based on the probability we partition the space
 - partitions belongs to different experts
- How to model the gating network?
 - A multi-way classifier model:
 - · softmax model

Learning with multiple models: Approach 2

• Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs

• Committee machines:

- Combine predictions of all models to produce the output
 - **Regression:** averaging
 - Classification: a majority vote
- Goal: Improve the accuracy of the 'base' model

Methods:

- Bagging (the same base models)
- Boosting (the same base models)
- Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

• Given:

- Training set of *N* examples
- A base learning model (e.g. decision tree, neural network, ...)

Method:

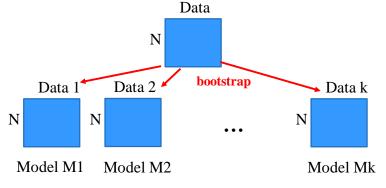
- Train multiple (k) base models on slightly different datasets
- Predict (test) by averaging the results of k models

Goal:

- Improve the accuracy of one model by using its multiple copies
- Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

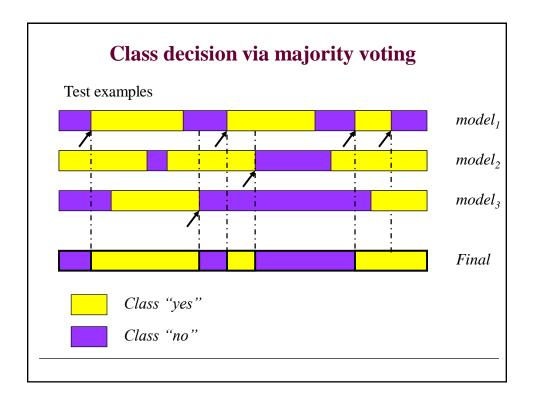
Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set (bootstrap)
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples



Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. a neural network, or a decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - Classification: a majority vote



Analysis of Bagging

- Expected error= Bias+Variance
 - Expected error is the expected discrepancy between the estimated and true function

$$E[(\hat{f}(X)-E[f(X)])^2]$$

It decomposes to two terms *Bias* + *Variance*

Bias is a squared discrepancy between averaged estimated and true function

$$(E[\hat{f}(X)]-E[f(X)])^2$$

 Variance is an expected divergence of the estimated function vs. its average value

$$E[\hat{f}(X)-E[\hat{f}(X)]]^2$$

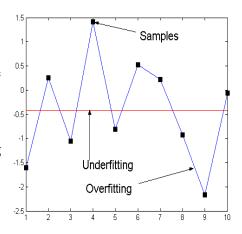
When Bagging works? Under-fitting and over-fitting

• Under-fitting:

- High bias (models are not accurate)
- Small variance (smaller influence of examples in the training set)

Over-fitting:

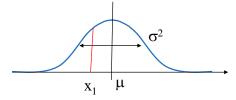
- Small bias (models flexible enough to fit well to training data)
- Large variance (models depend very much on the training set)



Averaging decreases variance

Example

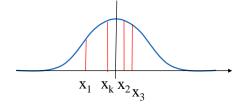
– Assume a random variable x with a $N(\mu, \sigma^2)$ distribution



- Case 1: we draw one example/measurement x_1 and use it to estimate the mean $\mu' = x_1$
 - The expected mean of the estimate $E[\mu'] = E[x_1] = \mu$
 - The variance of the mean estimate $Var(\mu')=Var(x_1)=\sigma^2$

Averaging decreases variance

• Example Assume a random variable x with a $N(\mu, \sigma^2)$ distribution



- Case 2: a variable x is measured independently K times $(x_1,x_2,...x_k)$ and the mean is estimated as:

$$\mu' = (x_1 + x_2 + ... + x_k)/K,$$

- The expected mean of the estimate $E[\mu'] = \mu$
- But, the variance of the mean estimate $Var(\mu')$ is smaller:

$$Var(\mu') = [Var(x_1) + ... Var(x_k)]/K^2 = K\sigma^2 / K^2 = \sigma^2/K$$

When Bagging works

Relation of the previous example to bagging:

• Bagging is a kind of averaging!

Main property of Bagging (proof omitted)

- Bagging decreases variance of the base model without changing the bias!!!
- Why? averaging!

Bagging typically helps

- When applied with an over-fitted base model
 - High dependency on actual training data
 - Example: fully grown decision trees

Bagging does not help much when

• Applied to models with a high bias. When the base model is robust to the changes in the training data (due to sampling)