CS 1675 Introduction to Machine Learning Lecture 22

Dimensionality reduction Feature selection

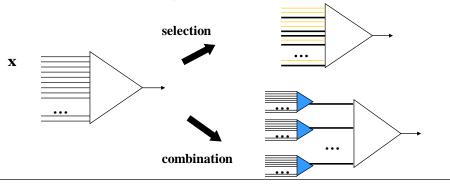
Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Dimensionality reduction. Motivation.

- ML methods are sensitive to the dimensionality d of data
- Question: Is there a lower dimensional representation of the data that captures well its characteristics?
- Objective of dimensionality reduction:
 - Find a lower dimensional representation of data
- Two learning problems:
 - Supervised $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), ..., (\mathbf{x_n}, y_n)\}$ $\mathbf{x_i} = (x_i^1, x_i^2, ..., x_i^d)$
 - Unsupervised $D = \{\mathbf{x_1, x_2,...,x_n}\}$ $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
- Goal: replace $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$ with \mathbf{x}_i ' of dimensionality d'< d

Dimensionality reduction

- Solutions:
 - Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - Combination of high dimensional inputs to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features



Task-dependent feature selection

Assume: Classification problem:

 $-\mathbf{x}$ - input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities

Selection approaches:

- Filtering approaches
 - Filter out features with small predictive potential
 - Done before classification; typically uses univariate analysis

Wrapper approaches

 Select features that directly optimize the accuracy of the multivariate classifier

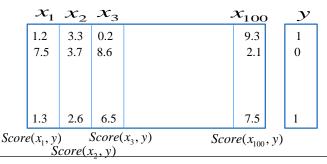
Embedded methods

- Feature selection and learning closely tied in the method
- Regularization methods, decision tree methods

Feature selection through filtering

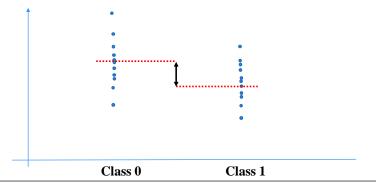
Assume: Classification problem: \mathbf{x} – input vector, y - output **How to select the features/inputs?**

- Step 1. For each input x_i in data calculate $Score(x_i, y)$ reflecting how well x_i predicts the output y alone
- Step 2. Pick a subset of inputs with the best scores $Score(x_i, y)$ (or equivalently eliminate/filter the inputs with the worst scores)



Feature scoring for classification

- Scores for measuring the differential expression
 - **T-Test score** (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Null hypothesis: is mean of class 0 = mean of class 1

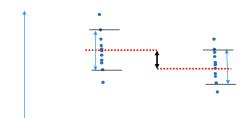


Feature scoring for classification

Scores for measuring the differential expression

• Fisher Score

Fisher(i) =
$$\frac{(\mu_i^{(+)} - \mu_i^{(-)})^2}{\sigma_i^{(+)^2} + \sigma_i^{(-)^2}}$$



Class 0

Class 1

• AUROC score: Area under Receiver Operating Characteristic curve

Feature scoring

- Correlation coefficients
 - Measures linear dependences

$$\rho(x_k, y) = \frac{Cov(x_k, y)}{\sqrt{Var(x_k)Var(y)}}$$

- Mutual information
 - Measures dependences
 - Needs discretized input values

$$I(x_k, y) = \sum_{i} \sum_{j} \widetilde{P}(x_k = j, y = i) \log_2 \frac{\widetilde{P}(x_k = j, y = i)}{\widetilde{P}(x_k = j)\widetilde{P}(y = i)}$$

Feature/input dependences

Univariate score assumptions:

- Only one input and its effect on y is incorporated in the score
- Effects of two features on y are considered to be independent

Correlation based feature selection

- A partial solution to the above problem
- **Idea:** good feature subsets contain features that are highly correlated with the class but independent of each other
- Assume a set of features S of size d. Then

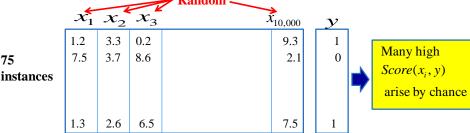
$$M(S) = \frac{d\overline{r}_{yx}}{\sqrt{d + d(d+1)\overline{r}_{xx}}}$$

- Average correlation between x and class y \bar{r}_{yx}
- Average correlation between pairs of xs

Feature selection: low sample size

Problems: Many inputs and low sample size

if many random features, and not many instances we can learn from, the features with a good predictive score may arise **simply by chance.** The probability of this can be quite large.



- 75 instances
 - Techniques to address the problem:
 - reduce **FDR** (False discovery rate) and
 - **FWER** (Family wise error)

Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model? How to find the best subset of inputs out of d inputs efficiently?

Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model?

• Internal cross-validation (k-fold cross validation)

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (k-fold):
 - Divide the train data into m equal partitions (of size N/k)
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

Wrapper approach:

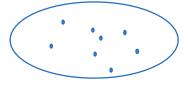
• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model?

• Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?



d inputs

Feature selection: wrappers

Wrapper approach:

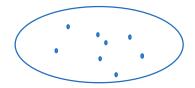
• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model?

• Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?



d inputs

For *d* inputs/features there are 2^d different input subsets to evaluate and compare

Feature selection: wrappers

How to find the appropriate feature subset S efficiently?

- For *d* inputs/features there are 2^d different feature subsets
- Solution : Greedy search in the space of classifiers
 - Option 1: Build the set incrementally
 - Add features one by one. Add features that improve the quality of the model the most
 - Option 2: Gradually remove features
 - Remove features that effect the accuracy the least
- Model quality:
 - Internal cross-validation (k-fold cross validation)

Feature selection: wrappers

Greedy selection

Level 1
$$\{x_1\}$$
 $\{x_2\}$ $\{x_3\}$... $\{x_{100}\}$ $M_{\{x_1\}}$ $M_{\{x_2\}}$ $M_{\{x_3\}}$... $M_{\{x_{100}\}}$ e $(M_{\{x_1\}})$ e $(M_{\{x_2\}})$ e $(M_{\{x_3\}})$... e $(M_{\{x_{100}\}})$ selected $\{x_2\}$ Best score

Level 2 $\{x_2, x_1\}$ $\{x_2, x_3\}$... $\{x_2, x_{100}\}$ $M_{\{x_2, x_1\}}$ $M_{\{x_2, x_3\}}$... $M_{\{x_2, x_{100}\}}$ selected $\{(x_2, x_3)\}$ e $(M_{\{x_2, x_3\}})$... $\{(x_2, x_{100})\}$ e $(M_{\{x_2, x_{100}\}})$ Best score

Level 3 $\{(x_2, x_3, x_1)\}$... $\{(x_2, x_3, x_{100})\}$

Feature selection: wrappers

Stopping criterion:

- Compare:
 - The best score at the previous level k-1
 - The best score at the current level k
- Stop when there is a decrease in performance on the set of features at level k

Embedded methods

Feature selection + model learning done jointly

- Examples of embedded methods:
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
 - Covers:
 - Regularized logistic/linear regression
 - Support vector machines
 - » Optimization of margins penalizes nonzero weights

$$J_{n}(\mathbf{w}, D) = L(\mathbf{w}, D) + R(\mathbf{w})$$
Function Loss function Regularization to optimize (fit of the data) penalty

- CART/Decision trees

Unsupervised dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
 - We have data $D = \{\mathbf{x_1, x_2,..., x_N}\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x, there is no class label y
- Our goal:
 - Find a lower dimensional representation of data of dimension d' < d

Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector with a lower dimension vector (obtained by combining inputs)

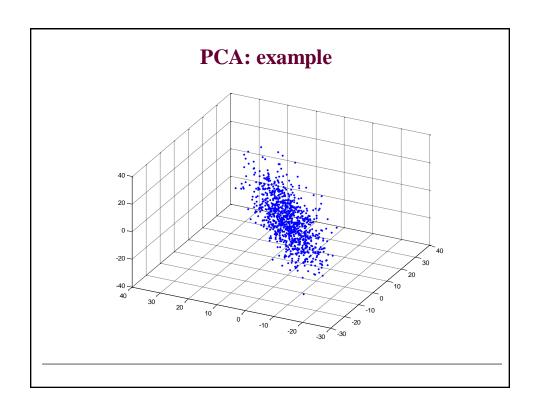
- Different from the feature subset selection !!!

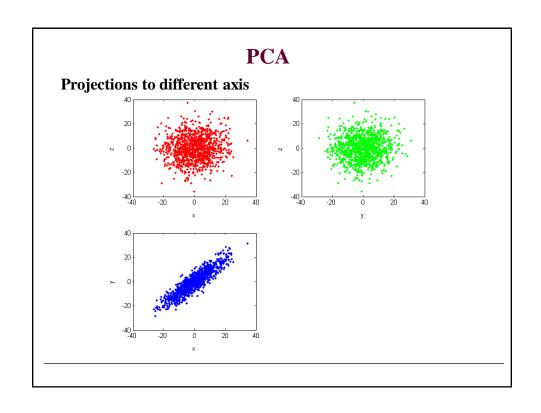
PCA:

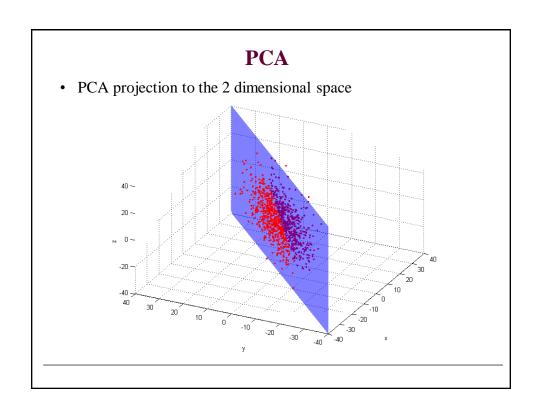
• A linear transformation of the d dimensional input x to the M dimensional feature vector z such that M < d

$$z = Ax$$

- Many different transformations exists, which one to pick?
- PCA –selects the linear transformation for which **the retained** variance is maximal
- Or, equivalently it is the linear transformation for which the sum of squares reconstruction cost is minimized

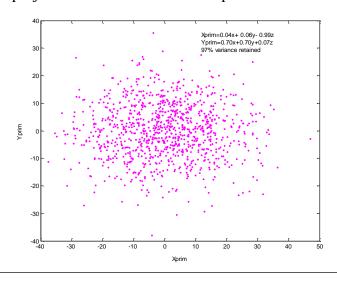






PCA

• PCA projection to the 2 dimensional space



Principal component analysis (PCA)

- PCA:
 - linear transformation of a d dimensional input \mathbf{x} to \mathbf{M} dimensional vector \mathbf{z} such that $\mathbf{M} < d$ under which the retained variance is maximal. **Remember:** no y is needed
- Fact:
 - A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors) $\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$
 - Leads to transformation of coordinates (from **x** to **z** using \mathbf{u} 's) \mathbf{u}_{1}^{T}

$$\mathbf{z}_i = \mathbf{u}_i^T \mathbf{x}$$
 $\mathbf{z} = \mathbf{U} \mathbf{x}$ $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2^T \\ ... \\ \mathbf{u}_d^T \end{bmatrix}$

Principal component analysis (PCA)

- Fact: A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors) $\mathbf{x} = \sum_{i=1}^{d} z_{i} \mathbf{u}_{i}$
 - Leads to transformation of coordinates

(from
$$\mathbf{x}$$
 to \mathbf{z} using \mathbf{u} 's)
$$z_i = \mathbf{u}_i^T \mathbf{x}$$

Standard bases: (1,0,0); (0,1,0); (0,0,1)

z = Ux

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ T \end{bmatrix}$$

•

New bases: \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3

PCA

• Idea: represent d-dimensional \mathbf{x}^n with an M-dimensional \mathbf{z}^n formed by subset of z_i coordinates for the bases defined by \mathbf{U} .

- Goal: We want to find:
 - (1) Basis vectors U and (2) a subset of basis of size M to keep
- This effectively replaces \mathbf{x}^n with its approximation $\widetilde{\mathbf{x}}^n$

$$\mathbf{x}^{n} = \sum_{i=1}^{d} z_{i}^{n} \mathbf{u}_{i} \qquad \longrightarrow \qquad \widetilde{\mathbf{x}}^{n} = \sum_{i=1}^{M} z_{i}^{n} \mathbf{u}_{i} + \sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}$$

 b_i - constant and fixed for all data-points

PCA

• Goal: We want to find: z_i

Basis vectors U and a subset of basis of size M to keep

$$\mathbf{x}^{n} = \sum_{i=1}^{d} z_{i}^{n} \mathbf{u}_{i} \qquad \longrightarrow \qquad \widetilde{\mathbf{x}}^{n} = \sum_{i=1}^{M} z_{i}^{n} \mathbf{u}_{i} + \sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}$$

 b_i - constant and fixed for all data-points

- How to choose the best set of basis vectors?
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

Error for data entry
$$\mathbf{x}^n$$
 $\mathbf{x}^n - \widetilde{\mathbf{x}}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$
Reconstruction error

$$E_{M} = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{x}^{n} - \widetilde{\mathbf{x}}^{n}\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^{2}$$

PCA

• **Differentiate the error function** with regard to all b_i and set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \overline{\mathbf{x}} \qquad \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$$

• Then we can rewrite:

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

• The error function is optimized when basis vectors satisfy:

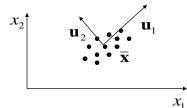
$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i \qquad \qquad E_M = \frac{1}{2} \sum_{i=M+1}^d \lambda_i$$

The best *M* **basis vectors**: discard vectors with *d-M* smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector \mathbf{u}_i – is called a **principal component**

PCA

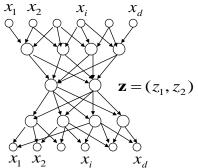
 Once eigenvectors u_i with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions



- To find the "true" dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- **Problem:** PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.
- Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative (or auto-encoder) network: a neural network with the same inputs and outputs (x)



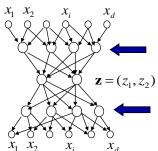
• The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

• Error criterion:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

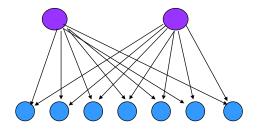
- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning



Latent variable models

- · Learning using unsupervised learning
- Dimensionality reduction via inference

Latent variables (s): Dimensionality k



Dimensionality reduction via inference

Observed variables x: real valued vars Dimensionality d