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Density estimation

Data: p-{D,D,,.D,}
D, =x; a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n samples esfimate
p(X) D={D,,D,...D,} ' p(X)

Standard (iid) assumptions: Samples
 are independent of each other
« come from the same (identical) distribution (fixed p(X))
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Modeling complex distributions

Question: How to model and learn complex multivariate
distributions p(X) with a large number of variables?

Example: modeling of disease — symptoms relations
+ Disease: pneumonia
+ Patient symptoms (findings, lab tests):
— Fever, Cough, Paleness, WBC (white blood cells) count,
Chest pain, etc.

» Maodel of the full joint distribution:
P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables:
P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

Bayesian belief networks (BBNS)

Bayesian belief networks (late 80s, beginning of 90s)
Key features:

 Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

« Take advantage of conditional and marginal independences
among random variables

« XandY areindependent P(X,Y)=P(X)P(Y)
« Xand are conditionally independent given Z

P(X,Y |Z2)=P(X[Z)P(Y |Z2)
P(X|Y,Z)=P(X|Z)




Bayesian belief network

1. Directed acyclic graph
* Nodes = random variables
Burglary, Earthquake, Alarm, Mary calls and John calls
» Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake,
The chance of John calling is affected by the Alarm

'

@ P(A|B,E)
PU|A) \ P(M[A)
Gohncalis)

Bayesian belief network

2. Local conditional distributions
« relating variables and their parents

P(E)
T F P T F
Burglary )| 0.001 0.999 | ( Earthquake)) |5.002 0.998
/ B E|] T F P(A|B,E)
T T |0.95 0.05
T F | 0.94 0.06
F T | 029 0.71
F F | 0.0010.999
PUJIA) \
Al T F A

=
T 0.90 0.1 @ 1107 03
F| 0.05 0.95 F| 001 0.99

P(M|A)




Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(Xy, X5, X)) = HP(Xi | pa(X;))

i=l..n

E

B
Example: O\ f
Assume the following assignment A
of values to random variables C/ E

B=T,E=T,A=T,J=T,M=F / M

Then its probability is:
PB=T,E=T,A=T,J=T,M=F)=
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J =T|A=T)P(M =F|A=T)

Bayesian belief networks (BBNS)

Bayesian belief networks

 Represent the full joint distribution over the variables more
compactly using the product of local conditionals.

« But how did we get to local parameterizations?
Answer:
« Chainrule +

« Graphical structure encodes conditional and marginal
independences among random variables

« AandB are independent P(A,B)=P(A)P(B)

« A and B are conditionally independent given C
P(A|C,B)=P(A|C) P(A,B|C)=P(A|C)P(B|C)

» The graph structure implies the decomposition !!!




Independences in BBNs

3 basic independence structures:

Burglary

Independences in BBNs

1.

Burglary

@

2. 3.
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1. JohnCalls is independent of Burglary given Alarm
PUIAB)=PU[A)
P(J,B|A) =P [AP(B|A)
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Independences in BBNs
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2. Burglary is independent of Earthquake (not knowing Alarm)
Burglary and Earthquake become dependent given Alarm !!

P(B,E) = P(B)P(E)

1.

Independences in BBNs

Burglary
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Earthg
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3. MaryCalls is independent of JohnCalls given Alarm

PO|AM)=PJ|A
PAO,M|A) =PI |APM|A




Independences in BBN

BBN distribution models many conditional independence
relations among distant variables and sets of variables

These are defined in terms of the graphical criterion called d-
separation

D-separation and independence
— Let X,Y and Z be three sets of nodes

— If X'and Y are d-separated by Z, then X and Y are
conditionally independent given Z

D-separation :

— A'is d-separated from B given C if every undirected path
between them is blocked with C

Path blocking
— 3 cases that expand on three basic independence structures

Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

A C B
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

A C B
@ —
w ,"
\\ ”’

Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

A C B
@ —
w ,"
\\ ”’

« 1. Path blocking with a linear substructure

Z
XO-==--O—@—O----0O v

. ZinC )
XInA YinB




Undirected path blocking
A is d-separated from B given C if every undirected path

between them is blocked

» 2. Path blocking with the wedge substructure
z

XO____Q/ZinC O----0 "

XinA YinB

Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

« 3. Path blocking with the vee substructure

XinA YinB
XO----0 , O---0F
/ Z or any of its descendants not in C
® [




Independences in BBNs

@
mm

+ Earthquake and Burglary are independent given MaryCalls ?

Independences in BBNs

@ RadioRepor}

=

» Earthquake and Burglary are independent given MaryCalls F
« Burglary and MaryCalls are independent (not knowing Alarm) ?

CS 1571 Intro to Al
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Independences in BBNs

@
mm

+ Earthquake and Burglary are independent given MaryCalls F
+ Burglary and MaryCalls are independent (not knowing Alarm) F
+ Burglary and RadioReport are independent given Earthquake  ?

Independences in BBNs

@ RadioRepor}

=

» Earthquake and Burglary are independent given MaryCalls F
» Burglary and MaryCalls are independent (not knowing Alarm) F
» Burglary and RadioReport are independent given Earthquake T
» Burglary and RadioReport are independent given MaryCalls ?
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Independences in BBNs

@
mm

+ Earthquake and Burglary are independent given MaryCalls F
+ Burglary and MaryCalls are independent (not knowing Alarm) F
+ Burglary and RadioReport are independent given Earthquake T
+ Burglary and RadioReport are independent given MaryCalls F

Full joint distribution in BBNs

B
Rewrite the full joint probability using the ’\
product rule:

PB=T,E=T,A=T,J=T,M=F)= J M
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Full joint distribution in BBNs

QB E
Rewrite the full joint probability using the
product rule:
PB=T,E=T,A=T,J=T,M =F)= M

Product rule
=PJ=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
Full joint distribution in BBNs

QB E
Rewrite the full joint probability using the
product rule:
PB=T,E=T,A=T,J=T,M =F)= J M

Product rule

-[PU=T[B=T,E=T,A=T,M=FJP(B=T,E=T,A=T,M =F)
-P(J=T|A=T)P(B=T,E=T,A=T,M =F)
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Full joint distribution in BBNs

QB
Rewrite the full joint probability using the
product rule:

PB=T,E=T,A=T,J=T,M=F)=

PQ=T|B=T,E=T,A=T,M =F)P(B=T,E=T,A=T,M =F)
PO =T|A=T)P(B=T,E=T,A=T,M =F) ooduct rule
P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)

Full joint distribution in BBNs

B
Rewrite the full joint probability using the ’\
product rule:

PB=T,E=T,A=T,J=T,M=F)= ]

PU=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
PUJ=T|A=T)P(B=T,E=T,A=T,M =F)
IP(M =F [B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
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Full joint distribution in BBNs

QB
Rewrite the full joint probability using the
product rule:

PB=T,E=T,A=T,J=T,M=F)=

PU=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
PU=T|A=T)P(B=T,E=T,A=T,M =F)
P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
P(M=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)

Full joint distribution in BBNs

B
Rewrite the full joint probability using the ’\
product rule:

PB=T,E=T,A=T,J=T,M=F)= J M

PU=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
PU=T|A=T)P(B=T,E=T,A=T,M =F)
P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
P(M=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
P(B=T)P(E=T)
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QB
Rewrite the full joint probability using the
product rule:

P

Full joint distribution in BBNs

(B=T,E=T,A=T,J=T,M=F)=

PQ=T|B=T,E=T,A=T,M =F)P(B=T,E=T,A=T,M =F)
PO =T|A=T)P(B=T,E=T,A=T,M =F)

P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
P(M=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
PB=T)P(E=T)

=P(J T |A=T)P(M =F|A=T)P(A=T |B=T,E=T)P(B=T)P(E=T)

Parameter complexity problem

* Inthe BBN the full joint distribution is defined as:
P(Xy, X5, X)) = _HP(Xi | pa(X;))

« What did we save? e

Alarm example: binary (True, False) variables

# of parameters of the full joint:

? Cgarthquake
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Parameter complexity problem

« Inthe BBN the full joint distribution is defined as:
P(X, X,,... X)) = _HP(Xi | pa(X;))

« What did we save? =

Alarm example: binary (True, False) variables

# of parameters of the full joint:
2° =32
One parameter depends on the rest:
2°-1=31
# of parameters of the BBN:
2

Bayesian belief network: parameters count

PB) 2 P(E) 2
T F T F
Burglary )| 0.001 0.999 | ( Earthquake) |0.002 0.998
P(A|B,E)
/ BE| T F 8

T T | 0.95 0.05
T F | 0.94 0.06
Total: 20 F T | 029 0.71
F F | 0.0010.999

4 p@lA) PM|A) 4

Al T F Al T F

T| 0.90 0.1
F| 0.05 0.95

M-
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Parameter complexity problem

« Inthe BBN the full joint distribution is defined as:
P(X, X,,... X)) = HP(Xi | pa(X;))
« What did we save? =
Alarm example: 5 binary (True, False) variables
# of parameters of the full joint:
2° =32
One parameter depends on the rest:
2°-1=31
# of parameters of the BBN:
22 +2(2*)+2(2) =20
One parameter in every conditional depends on the rest:
2

Bayesian belief network: free parameters

pB) 1 P(E) 1
T F T F
Burglary )| 0.001 0.999 | ( Earthquake) |0.002 0.998
\
P(A|B,E) =1-0.002
/ BE| T F 4
T T 095 0.054—— =1-0.95
T F | 0.94 0.06
Total free F T|029 071
params: 10 F F | 0.0010.999
2 PUIA) P(M|A) 2

Al T F Al T F

T| 0.90 0.1
F| 0.05 0.95

M-

0.7 0.3
0.01 0.99
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Parameter complexity problem

« Inthe BBN the full joint distribution is defined as:
P(Xy, X5, X)) = _HP(Xi | pa(X;))

« What did we save? =

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:
25 -32 Cgurglan) e
One parameter depends on the rest:
2°-1=31
# of parameters of the BBN:
22 +2(2*)+2(2) =20
One parameter in every conditional depends on the rest:
2° +2(2)+2(1) =10

BBNs examples

 Invarious areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
« Pathfinder CPSC
* Munin
*« QMR-DT
— Collaborative filtering
— Military applications
— Insurance, credit applications

19



Diagnosis of car engine

+ Diagnose the engine start problem

Car insurance example

« Predict claim costs (medical, liability) based on application data

20



(ICU) Alarm network

HYPOVOLEMIS LY FAILURE ANAPHYLAXIS PULMONARY EMBOLUS

AMESTHESIA
INSUFFICIENT KINKED

PAP SHUNT |y rugaTion  TUBE  DISCONNECTION

WENT MACHINE

CATECHOLAMINE FF - WENT &

BLOCD MY SETTIMNG
PRESSLURE
HIMUTE
ERRCR VENTILATION
LOAW OUTPUT

ARTERIAL
coz
HR BEF HR EKG HR BAT EXFIRED

coz

CPCS

« Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (at University of Pittsburgh)

» 422 nodes and 867 arcs

T 5 ¥ T
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Naive Bayes model

A special (simple) Bayesian belief network Class y
 Defines a generative classifier model
* Model of P(x,y)=P(x|y) P(y)

— Class variable y O
p(y) X X X,
— Attributes are independent given y
d
p(xly=i)=]]p(x;ly=0)
j=1
Learning:
« Parameterize models of p(y) and all p(x; | y=i)
* ML estimates of the parameters
Naive Bayes model
A special (simple) Bayesian belief network Class Y
» Defines a generative classifier model
* Model of P(x,y)=P(x]|y) P(y)
o O ..
Classification: given x select the class Xa X, Xa

— Select the class with the maximum posterior

— Calculation of a posterior is an example of BBN inference

d
: : p(y=0] [ p(x;ly =i)

. =1 X =1 i
p(y:||X)= kp(y )p( |y ) =— Jld
doply=uyp(x|y=u) > p(y=w)]]pxly=u)

u=1 u=1 j=1

Remember: we can calculate the probabilities from the full joint
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