#### CS 1675 Introduction to Machine Learning Lecture 18

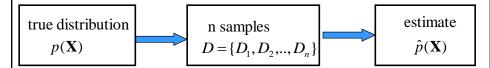
## Bayesian belief networks II

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square

#### **Density estimation**

**Data:**  $D = \{D_1, D_2, ..., D_n\}$  $D_i = \mathbf{x}_i$  a vector of attribute values

**Objective:** try to estimate the underlying true probability distribution over variables X, p(X), using examples in D



**Standard (iid) assumptions: Samples** 

- · are independent of each other
- come from the same (identical) distribution (fixed p(X))

#### **Modeling complex distributions**

Question: How to model and learn complex multivariate distributions  $\hat{p}(\mathbf{X})$  with a large number of variables?

Example: modeling of disease – symptoms relations

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
  - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.
- Model of the full joint distribution: P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: P(Pneumonia=T, Fever=T, Cought=T, WBC=High, Chest pain=T)

#### Bayesian belief networks (BBNs)

**Bayesian belief networks** (late 80s, beginning of 90s) **Key features:** 

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- X and Y are independent P(X,Y) = P(X)P(Y)
- X and Y are conditionally independent given Z

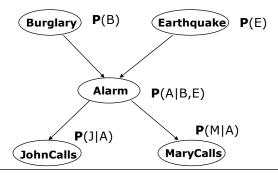
$$P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
$$P(X \mid Y,Z) = P(X \mid Z)$$

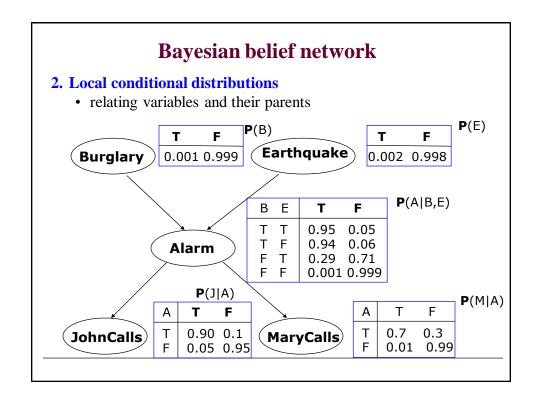
#### Bayesian belief network

#### 1. Directed acyclic graph

- Nodes = random variables
  Burglary, Earthquake, Alarm, Mary calls and John calls
- **Links** = direct (causal) dependencies between variables.

  The chance of Alarm being is influenced by Earthquake,
  The chance of John calling is affected by the Alarm





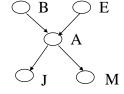
**Full joint distribution** is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

#### **Example:**

Assume the following assignment of values to random variables

$$B = T, E = T, A = T, J = T, M = F$$



Then its probability is:

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$P(B = T)P(E = T)P(A = T \mid B = T, E = T)P(J = T \mid A = T)P(M = F \mid A = T)$$

#### Bayesian belief networks (BBNs)

#### **Bayesian belief networks**

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

#### **Answer:**

- Chain rule +
- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A, B) = P(A)P(B)
- A and B are conditionally independent given C  $P(A \mid C, B) = P(A \mid C) \qquad P(A, B \mid C) = P(A \mid C)P(B \mid C)$
- The graph structure implies the decomposition !!!

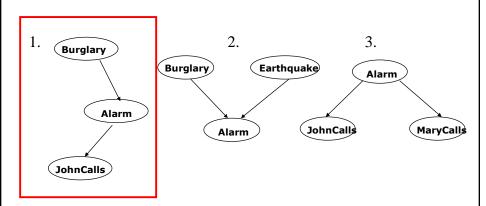
#### 3 basic independence structures:

1. Burglary 2. 3.

Burglary Earthquake Alarm

Alarm JohnCalls MaryCalls

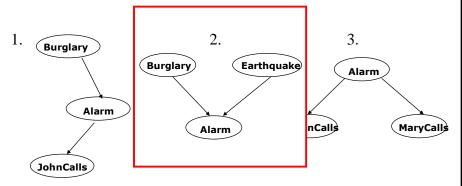
# **Independences in BBNs**



1. JohnCalls is independent of Burglary given Alarm

$$P(J \mid A, B) = P(J \mid A)$$

$$P(J, B \mid A) = P(J \mid A)P(B \mid A)$$



2. Burglary **is independent** of Earthquake (not knowing Alarm) Burglary and Earthquake **become dependent** given Alarm !!

$$P(B, E) = P(B)P(E)$$

#### **Independences in BBNs**

1. Burglary Earthc

Alarm

Alarm

JohnCalls

MaryCalls

3. MaryCalls is independent of JohnCalls given Alarm

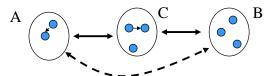
$$P(J \mid A, M) = P(J \mid A)$$

$$P(J,M\mid A) = P(J\mid A)P(M\mid A)$$

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
  - Let X,Y and Z be three sets of nodes
  - If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation:
  - A is d-separated from B given C if every undirected path between them is **blocked with C**
- Path blocking
  - 3 cases that expand on three basic independence structures

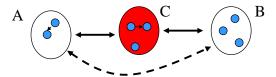
#### **Undirected path blocking**

A is d-separated from B given C if every undirected path between them is **blocked** 



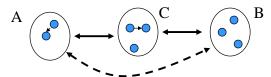
#### **Undirected path blocking**

A is d-separated from B given C if every undirected path between them is **blocked** 

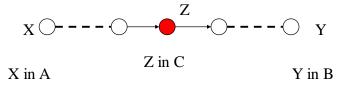


# **Undirected path blocking**

A is d-separated from B given C if every undirected path between them is **blocked** 



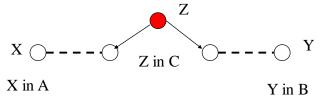
• 1. Path blocking with a linear substructure



#### **Undirected path blocking**

A is d-separated from B given C if every undirected path between them is **blocked** 

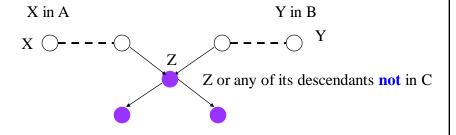
• 2. Path blocking with the wedge substructure

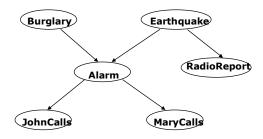


## **Undirected path blocking**

A is d-separated from B given C if every undirected path between them is **blocked** 

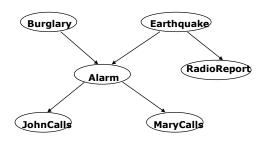
• 3. Path blocking with the vee substructure





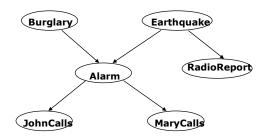
• Earthquake and Burglary are independent given MaryCalls ?

# **Independences in BBNs**



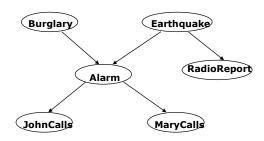
- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) ?

CS 1571 Intro to AI

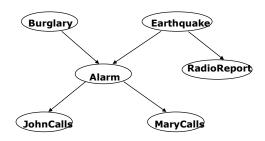


- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake ?

#### **Independences in BBNs**



- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm)  $\ \mathbf{F}$
- Burglary and RadioReport are independent given Earthquake
- Burglary and RadioReport are independent given MaryCalls ?

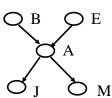


- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake
- Burglary and RadioReport are independent given MaryCalls

# Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B = T, E = T, A = T, J = T, M = F) =$$

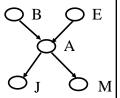


F

T

F

Rewrite the full joint probability using the product rule:

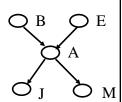


$$P(B=T,E=T,A=T,J=T,M=F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

#### Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

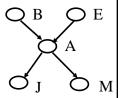


$$P(B=T, E=T, A=T, J=T, M=F) =$$
Product rule

$$= P(J = T \mid B = T, E = T, A = T, M = F) P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

Rewrite the full joint probability using the product rule:



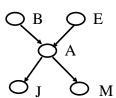
$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$
Product rule
$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

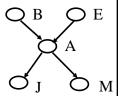
$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

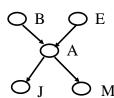
$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

#### Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

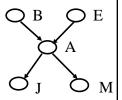
$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$\underline{P(A=T \mid B=T, E=T)}P(B=T, E=T)$$

$$P(B=T)P(E=T)$$

 $P(A = T \mid B = T, E = T)P(B = T, E = T)$ 

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T \mid B = T, E = T)P(B = T, E = T)$$

$$P(B = T)P(E = T)$$

$$= P(J = T \mid A = T)P(M = F \mid A = T)P(A = T \mid B = T, E = T)P(B = T)P(E = T)$$

#### Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

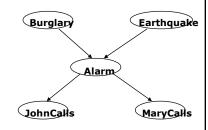
$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1, n} \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: binary (True, False) variables

# of parameters of the full joint:

?



#### Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: binary (True, False) variables

# of parameters of the full joint:

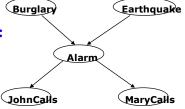
$$2^5 = 32$$

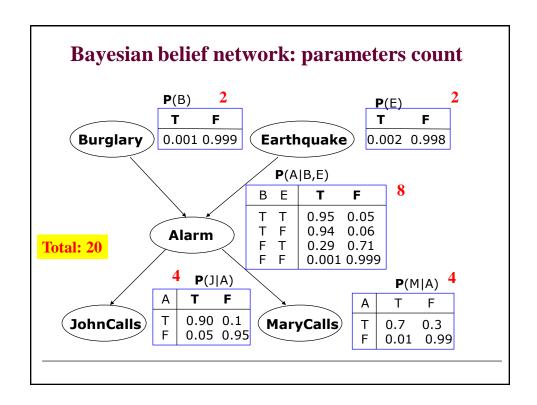
One parameter depends on the rest:

$$2^5 - 1 = 31$$

# of parameters of the BBN:

?





#### Parameter complexity problem

• In the BBN the full joint distribution is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,..n} \mathbf{P}(X_i \mid pa(X_i))$$
• What did we save?

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

$$2^5 = 32$$

One parameter depends on the rest:

$$2^5 - 1 = 31$$

# of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional depends on the rest:

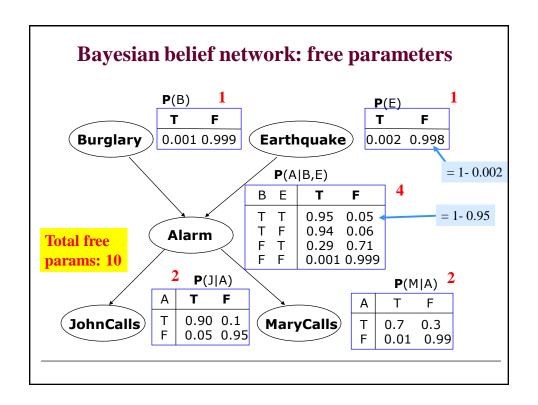
Burglary

JohnCalls

Alarm

Earthquake

MaryCalls



#### Parameter complexity problem

• In the BBN the full joint distribution is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,..n} \mathbf{P}(X_i \mid pa(X_i))$$
• What did we save?

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

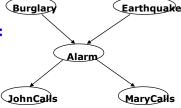
$$2^5 = 32$$

One parameter depends on the rest:

$$2^5 - 1 = 31$$

# of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$



One parameter in every conditional depends on the rest:

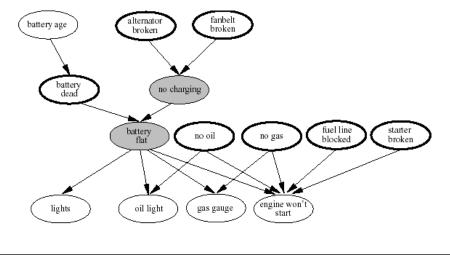
$$2^2 + 2(2) + 2(1) = 10$$

#### **BBNs** examples

- In various areas:
  - Intelligent user interfaces (Microsoft)
  - Troubleshooting, diagnosis of a technical device
  - Medical diagnosis:
    - Pathfinder CPSC
    - Munin
    - QMR-DT
  - Collaborative filtering
  - Military applications
  - Insurance, credit applications

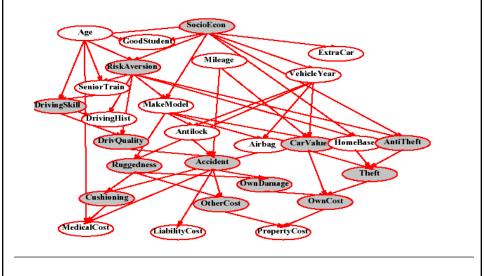
# Diagnosis of car engine

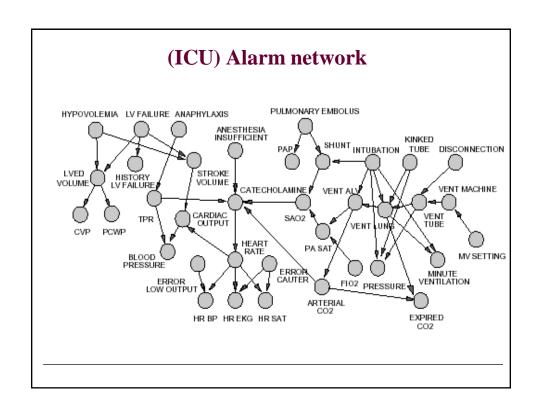
• Diagnose the engine start problem



## Car insurance example

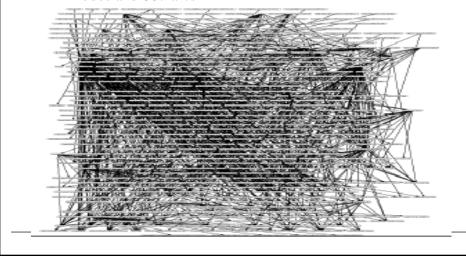
• Predict claim costs (medical, liability) based on application data





#### **CPCS**

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (at University of Pittsburgh)
- 422 nodes and 867 arcs



#### Naïve Bayes model

A special (simple) Bayesian belief network



• Model of 
$$P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x} \mid \mathbf{y}) P(\mathbf{y})$$

- Class variable yp(y)
- Attributes are independent given y

$$p(\mathbf{x} | y = i) = \prod_{j=1}^{d} p(x_j | y = i)$$

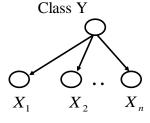


- Parameterize models of p(y) and all  $p(x_i | y=i)$
- ML estimates of the parameters

#### Naïve Bayes model

A special (simple) Bayesian belief network

- Defines a generative classifier model
- Model of  $P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x} \mid \mathbf{y}) P(\mathbf{y})$



Class y

Classification: given x select the class

- Select the class with the maximum posterior
- Calculation of a posterior is an example of BBN inference

$$p(y=i \mid \mathbf{x}) = \frac{p(y=i)p(\mathbf{x} \mid y=i)}{\sum_{u=1}^{k} p(y=u)p(\mathbf{x} \mid y=u)} = \frac{p(y=i)\prod_{j=1}^{d} p(x_{j} \mid y=i)}{\sum_{u=1}^{k} p(y=u)\prod_{j=1}^{d} p(x_{j} \mid y=u)}$$

Remember: we can calculate the probabilities from the full joint