CS 1675 Intro to Machine Learning Lecture 17

Bayesian belief networks

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Midterm exam: reminder

Midterm exam

- Thursday, March 7, 2018
- In-class
- Closed book
- Material covered by the end of last week

Learning via parameter estimation

In this lecture we consider **parametric density estimation Basic settings:**

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ :

 $\hat{p}(\mathbf{X} \mid \boldsymbol{\Theta})$

• **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: Find the parameters Θ that explain the observed data the best

	Distribution models
•	So far we have covered density estimation for "simple" distribution models:
	– Bernoulli
	– Binomial
	– Multinomial
	– Gaussian
	– Poisson
B	ut what if:
•	The dimension of $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$ is large
	 Example: patient data
•	Compact parametric distributions do not seem to fit the data
	 E.g.: multivariate Gaussian may not fit
•	We have only a relatively "small" number of examples to do accurate parameter estimates

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

Solution:

- Decompose the distribution using conditional independence relations
- Decompose the parameter estimation problem to a set of smaller parameter estimation tasks

Decomposition of distributions under conditional independence assumption is the main idea behind **Bayesian belief networks**

Example Problem description:

- **Disease:** pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

Representation of a patient case:

• Symptoms and disease are represented as random variables

Our objectives:

- Describe a multivariate distribution representing the relations between symptoms and disease
- Design inference and learning procedures for the multivariate model

Representation complexity								
P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain								
Pneumonia	Fever	Cough	Paleness	WBC	Chest pain	Probability		
Т	Т	Т	Т	High	Т	0.02		
Т	Т	Т	Т	High	F	0.005		
Т	Т	Т	Т	Normal	Т	0.004		
• How many probabilities are there?								

Conditional probabilities

Conditional probability

Ì

• Is defined in terms of the joint probability:

$$P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0$$

• Example:

 $P(pneumonia = true | WBCcount = high) = \frac{P(pneumonia = true, WBCcount = high)}{P(WBCcount = high)}$

$$P(pneumonia = false | WBCcount = high) =$$

$$P(pneumonia = false | WBCcount = high) =$$

$$\frac{P(pneumonia = false, WBCcount = high)}{P(WBCcount = high)}$$

Inference

Any joint probability can be expressed as a product of conditionals via the **chain rule**.

$$P(X_1, X_2, \dots, X_n) = P(X_n | X_{1,} \dots, X_{n-1}) P(X_{1,} \dots, X_{n-1})$$

= $P(X_n | X_{1,} \dots, X_{n-1}) P(X_{n-1} | X_{1,} \dots, X_{n-2}) P(X_{1,} \dots, X_{n-2})$
= $\prod_{i=1}^n P(X_i | X_{1,} \dots, X_{i-1})$

Why this may be important?

• It is often easier to define the distribution in terms of conditional probabilities:

– E.g.

 $\mathbf{P}(Fever | Pneumonia = T)$ $\mathbf{P}(Fever | Pneumonia = F)$

Modeling complex distributions

- Defining the **full joint distribution** makes it possible to represent and reason with the probabilities
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O(d^k)$ numbers.
 - k number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d^k)$ steps.
- Acquisition problem. How to acquire/learn all these probabilities?

