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CS 1675 Intro to Machine Learning

Lecture 17

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Bayesian belief networks

Midterm exam: reminder

Midterm exam

• Thursday, March 7, 2018

• In-class

• Closed book

• Material covered by the end of last week

mailto:milos@cs.pitt.educ
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Density estimation

Data: 

Objective: estimate the model of the underlying probability 
distribution over variables       ,           ,  using examples in  D

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Density estimation

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Independently drawn instances

from the same fixed distribution
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Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters       : 

• Data

Objective: Find the parameters        that explain the observed 

data the best

},,,{ 21 dXXX X



},..,,{ 21 nDDDD 



)|(ˆ Xp

Parameter estimation 

• Maximum likelihood (ML)

– yields: one set of parameters

– the target distribution is approximated as:

• Bayesian  parameter estimation

– uses the posterior distribution over possible parameters

– Yields: all possible  settings of          (and their “weights”) 

– The target distribution is approximated as: 

),|( Dpmaximize
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Parameter estimation

Other possible criteria:

• Maximum a posteriori probability (MAP)

– Yields: one set of parameters

– Approximation:

• Expected value of the parameter

– Expectation taken with regard to posterior

– Yields: one set of parameters

– Approximation:

maximize ),|( Dp Θ (mode of the posterior)

MAPΘ

)(ˆ ΘΘ E

)()(ˆ
MAPpp Θ|XX 

),|( Dp Θ

)ˆ()(ˆ Θ|XX pp 

(mean of the posterior)

Distribution models

• So far we have covered density estimation for “simple” 
distribution models:

– Bernoulli

– Binomial

– Multinomial

– Gaussian

– Poisson

But what if:

• The dimension of                                      is large

– Example: patient data

• Compact parametric distributions do not seem to fit the data

– E.g.: multivariate Gaussian may not fit

• We have only a relatively “small” number of examples to do 
accurate parameter estimates 

},,,{ 21 dXXX X
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Modeling complex distributions

Question: How to model and learn complex multivariate 

distributions            with a large number of variables?

Solution:

• Decompose the distribution using conditional independence 

relations 

• Decompose the parameter estimation problem to a set of 

smaller parameter estimation tasks

Decomposition of distributions under conditional independence 

assumption is the main idea  behind Bayesian belief networks

)(ˆ Xp

Example

Problem description:

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

Representation of a patient case: 

• Symptoms and disease are represented as random variables

Our objectives: 

• Describe a multivariate distribution representing the relations 

between symptoms and disease

• Design inference and learning procedures for the multivariate 

model
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Representation complexity

Example: modeling of disease – symptoms relations

• Disease: pneumonia (T/F) 

• Patient symptoms (findings, lab tests):

– Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood 

cells) count (High/Normal/Low), Chest pain (T/G), etc.

Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

)(ˆ Xp

Representation complexity

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain 

Disease: pneumonia (T?F) 

• Patient symptoms (findings, lab tests):

– Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood 

cells) count (High/Normal/Low), Chest pain (T/G), etc.

• How many probabilities are there?

)(ˆ Xp

Pneumonia Fever Cough Paleness WBC Chest pain Probability

T T T T High T 0.02

T T T T High F 0.005

T T T T Normal T 0.004

…
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Representation complexity

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain 

Disease: pneumonia (T?F) 

• Patient symptoms (findings, lab tests):

– Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood 

cells) count (High/Normal/Low), Chest pain (T/G), etc.

• How many probabilities are there? 25*3 =32*3=96

O(a k)  where k is the number of variables

)(ˆ Xp

Pneumonia Fever Cough Paleness WBC Chest pain Probability

T T T T High T 0.02

T T T T High F 0.005

T T T T Normal T 0.004

…

Marginalization

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount

0008.0

0042.0

0001.0

9929.0

0001.0

0019.0

)(PneumoniaP

001.0
999.0

Marginalization (summing of rows, or columns)

- summing out variables

table32
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Joint distribution over a subset variables

• Full joint distribution is defined over all variables we use in 

the model 

E.g.  P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

• Important: Any joint probability over a subset of variables 

can be obtained via marginalization from the full joint

E.g. 

• Question: Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?








},{,

),,,,(

 ),,(

FTpc

pPalenesscCoughFeverWBCcountPneumoniaP

FeverWBCcountPneumoniaP

Joint probabilities

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??
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Joint probabilities and independence

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

• Only if the variables are independent !!!

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??

Variable independence

• The two events A, B  are said to be independent if: 

P(A, B) = P(A)P(B)

• The variables X, Y are said to be independent if their joint 

probabilities can be expressed as a product of marginal 

probabilities:

P(X, Y) = P(X)P(Y)
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Conditional probability

Conditional probability :

• Probability of A given B

• Conditional probability is defined in terms of joint probabilities

• Joint probabilities can be expressed in terms of conditional 

probabilities

• Conditional probability – is useful for various probabilistic 

inferences 

),,|( TrueCoughhighWBCcountTrueFeverTruePneumoniaP 

)(

),(
)|(

BP

BAP
BAP 

)()|(),( BPBAPBAP 

),,( 21 nXXXP    

n

i ii XXXP
1 1,1 )|( 

(product rule)

(chain rule)

Conditional probabilities

Conditional probability

• Is defined in terms of  the joint probability:

• Example:

 )|( highWBCcounttruepneumoniaP

0)(  s.t.  
)(

),(
)|(  BP

BP

BAP
BAP

)(

),(

highWBCcountP

highWBCcounttruepneumoniaP





 )|( highWBCcountfalsepneumoniaP

)(

),(

highWBCcountP

highWBCcountfalsepneumoniaP




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Conditional probabilities

Conditional probability distribution 

• Defines probabilities for all possible assignments of values to 

target variables, given a fixed assignment of other variable values

)|(

)|(

highWBCcountfalsePneumoniaP

highWBCcounttruePneumoniaP





0.1

0.1

0.1

)|( WBCcountPneumoniaP

high

normal

low

Pneumonia

True False

WBCcount 08.0 92.0

0001.0 9999.0

0001.0 9999.0

3 element vector of 2 elements

)|( highWBCcounttruePneumoniaP 

Variable we 

condition on

Inference

Any probability (joint or conditional)  can be computed from 

the full joint distribution !!!

• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over a set of variables, given  other 

variables’ values is obtained through marginalization and 

definition of conditionals 

 ),,,(),(  
i j

ji dDcCbBaAPcCaAP
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
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Inference

Any joint probability can be expressed as a product of conditionals

via the chain rule. 

Why this may be important?

• It is often easier to define the distribution in terms of conditional 

probabilities:

– E.g. 

)()|(),,( 1,11,121  nnnn XXPXXXPXXXP 

)()|()|( 2,12,111,1  nnnnn XXPXXXPXXXP 

  
n

i ii XXXP
1 1,1 )|( 

)|( TPneumoniaFever P

)|( FPneumoniaFever P

Probabilistic inference 

Various probabilistic inference tasks:

• Diagnostic task. (from effect to cause)

• Prediction task.  (from cause to effect)

• Other probabilistic queries (queries on joint distributions).

)|( TFeverPneumonia P

)|( TPneumoniaFever P

)(FeverP

),( ChestPainFeverP
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Modeling complex distributions

• Defining the full joint distribution makes it possible to 

represent and reason with the probabilities

• We are able to handle an arbitrary inference problem

Problems:

– Space complexity. To store a full joint distribution we 

need  to remember             numbers.

k – number of random variables, d – number of values

– Inference (time) complexity. To compute some queries 

requires             steps. 

– Acquisition problem. How to acquire/learn all these 

probabilities?

 )(d kO

 )(d kO

Pneumonia example 

• Space complexity. 

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), Paleness (2: T,F), Chest-

pain (2:T,F) 

– Number of assignments: 2*2*2*3*2*2=96

– We need to define at least 95 probabilities.

• Time complexity.

– Assume we need to compute the marginal of Pneumonia=T 

from the full joint

– Sum over: 2*2*3*2*2=48 combinations

 )( TPneumoniaP

    
    


FTi FTj lnhk FTu FTv

vChestPainuPalekWBCcountjCoughiFeverP
, , ,, , ,

),,,,(
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Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)

– Give solutions to the space, acquisition bottlenecks

– Partial solutions for time complexities

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z

)()(),( YPXPYXP 

)|()|()|,( ZYPZXPZYXP 

)|(),|( ZXPZYXP 

Alarm system example

Story: Assume your house has an alarm system against burglary. You live in 

the seismically active area and the alarm system can get occasionally set off by 

an earthquake. You have two neighbors, Mary and John, who do not know 

each other. If they hear the alarm they call you, but this is not guaranteed. 

We want to represent the relations among the events:

– Burglary, Earthquake, Alarm, Mary calls and John calls

From the story we can extract (typically causal) relations among the events

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph

• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 

The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions 

• relating variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 

distributions (obtained via the chain rule):

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

M
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J

E

 ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,


