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Multiclass classification (cont)

+    Decision trees

Multiclass classification

• Binary classification: 

– Number of classes = 2

– A special case of multiclass classification 

Multiclass classification

– Number of classes is > 2

mailto:milos@cs.pitt.educ
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Discriminative approach

• Parametric models of discriminant functions:

– g0(x), g1(x), .. gK-1(x)

• Learns the discriminant functions directly

Key issues:

• How to design the discriminant functions?

• How to train them? 

Another question:

• Can we use binary classifiers and their class outputs to build the 

multi-class models?  

One versus the rest (OVR)

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 1:

A binary logistic regression on every class versus the rest (OvR)

Class decision: class label for a ‘singleton’ class

– Does not work all the time

0 vs. (1 or 2)

1 vs. (0 or 2)

2 vs. (0 or 1)

1

1x

dx
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Multiclass classification. Example
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Multiclass classification. Approach 1.
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Multiclass classification. Approach 1.
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One versus the rest (OVR)

Unclear how to decide on what class to choose in some regions

– Ambiguous region:

• 0 vs. (1 or 2) classifier says 0

• 1 vs. (0 or 2) classifier says 1

– Region of nobody:

• 0 vs. (1 or 2) classifier says (1 or 2) 

• 1 vs. (0 or 2) classifier says (0 or 2) 

• 2 vs (1 or 2) classifier says (1 or 2)

One solution: Use discriminant functions from binary models

• compare discriminant functions defined on binary classifiers for 

single option: 

– discriminant function for i trained on i vs. rest

)()( xgxg restvsii 
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Multiclass classification. Approach 1.
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One vs One (OVO)

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 2:

– A binary logistic regression on all pairs

Class decision: class label based on who gets the majority

– Does not work all the time

0 vs. 1

0 vs. 2

1 vs. 2

1

1x

dx
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Multiclass classification. Example
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Multiclass classification (OVO)
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Multiclass classification OVO

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ambiguous

region

1 vs 2

0 vs 1

0 vs 2

0

1

2

One vs one (OVO) model

Unclear how to decide on what class to choose in some regions

– Ambiguous region:

• 0 vs. 1 classifier says 0

• 1 vs. 2 classifier says 1

• 2 vs. 0  classifier says 2

One possible solution:

• Use discriminant functions from binary models

• Define a new discriminant function by adding the discriminant 

functions for pairwise classifiers





ij

jvsii xgxg )()(
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Multiclass classification

OVR and OVO: 

• define multiclass classifier using output classes of binary 

classifiers

Problems: ambiguous regions, regions of nobody

Solution: define discriminant functions for the multiclass case using 

the discriminant functions from binary classification problems

A Concern: 

• Calibration of the discriminant functions

– Discriminant functions from independently trained binary 

classification models may not be directly comparable 

Solution: 

• joint learning of discriminant functions 
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Softmax function

• Multiple inputs   outputs probabilities
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Multiclass classification with softmax
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• Multiclass discriminant functions (they are related via softmax)

1

1x

dx

softmax

)(0 xg0z

1z

2z







Weights

w

)(1 xg

)(2 xg



10

CS 2750 Machine Learning

Multiclass classification with softmax
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Learning of the softmax model

• Learning of parameters w: statistical view 

Multi-way

Coin toss
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Learning of the softmax model

• Learning of the parameters w: statistical view

• Likelihood of outputs

• We want parameters w that maximize the likelihood

• Log-likelihood trick

– Optimize log-likelihood of outputs instead:

• Corresponding error

(negative log likelihood)
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Learning of the softmax model

• Error to optimize:

• Gradient

• The same very easy gradient update as used for the binary 

logistic regression

• We have to update the weights of k networks
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Decision trees

Decision tree classification

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region

1 1

1

0 0

0 0

0
0

01

1
1

0 0

0
0

1

1x

2x



13

Decision tree classification

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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Decision tree classification

Decision tree model: 

• formed by simple conditions (tests) on individual dimensions xi  

that recursively split the input space x

• Classify at the bottom of the tree

03 x

x

t f

01 x 02 x

t tf f

Example:

Binary classification 

Binary attributes

1 0 0 1

0

1 0

321 ,, xxx

}1,0{

classify

02 x

t
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Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi  

that recursively split the input space x 

• Classify at the bottom of the tree
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Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi  

that recursively split the input space x 
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Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi  

that recursively split the input space x 

• Classify at the bottom of the tree
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Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi  

that recursively split the input space x 

• Classify at the bottom of the tree
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Decision tree splits

Splits/conditions: 

• Equalities on categorical, binary values

– or 

• Inequalities for real values

–
03 x

t f

201 x 503 x

t tf f

1 0 0 1 1 0classify

03 x Bluex 2

5.03 x

…

Tree construction

How to construct /learn the decision tree?

Top-down algorithm:

• Finds the best split (condition) that 

can improve the classification

performance after that split 

• Stops when no improvement possible

Question: How to measure the improvement? 

We measure it with the help of : 

• Impurity measure:  measures the degree of mixing of the two 

classes in the subset of the training data D 

– Worst (maximum impurity) when # of 0s and 1s is the same 

x

t f
?
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Impurity measure

Let  D be a collection of data instances: 

• Let D0 and D1 be subsets of D corresponding to class 0 and class 1 

• Proportion if class 0 

and class 1 instances

Impurity measure I(D) 

• Measures the degree of mixing of the two classes in D

• The impurity measure should be:

– Largest when data are split evenly among the classes

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature

– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Classification improvement

Idea: add the split that reduces the impurity the most

Gain due to split – expected reduction in the impurity
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Decision tree learning

Greedy learning algorithm:

– Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

Algorithm sketch:

Repeat until no or small improvement in the impurity

– Find the attribute and the condition with the highest gain

– Add the condition to the tree and split the set accordingly

Limitations: greedy approach:

– It looks at a single attribute condition and gain in each step

– May fail when the combination of attributes is needed to  

improve the purity
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Decision tree learning

• Limitations of greedy methods

Cases in which only a combination of two or more attributes 

improves the impurity
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Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may 

do worse in terms of  the generalization error 

Solutions to the overfitting problem:

• Solution 1. Build the tree then prune the branches

– Build the tree, then eliminate leaves that overfit

– Use validation set to test for the overfit

• Solution 2. Prune while building the tree

– Test for the overfit in the tree building phase

– Stop building the tree when performance on the validation 

set deteriorates 
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Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for the 

overfit

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for the 

overfit

Compare:  #Errors (V)  vs   #Error (V’) + # Errors(V’’)

V

V’ V’’
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Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for the 

overfit

Compare:  #Errors (V)  <   #Error (V’) + # Errors(V’’)

V

V’ V’’

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for 

the overfit

Compare:  #Errors (V)  <   #Error (V’) + # Errors(V’’)

V

V’ V’’


