
1

CS 1675 Machine Learning

Lecture 15

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Multiclass classification (cont)

+ Decision trees

Multiclass classification

• Binary classification:

– Number of classes = 2

– A special case of multiclass classification

Multiclass classification

– Number of classes is > 2

mailto:milos@cs.pitt.educ

2

Discriminative approach

• Parametric models of discriminant functions:

– g0(x), g1(x), .. gK-1(x)

• Learns the discriminant functions directly

Key issues:

• How to design the discriminant functions?

• How to train them?

Another question:

• Can we use binary classifiers and their class outputs to build the

multi-class models?

One versus the rest (OVR)

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 1:

A binary logistic regression on every class versus the rest (OvR)

Class decision: class label for a ‘singleton’ class

– Does not work all the time

0 vs. (1 or 2)

1 vs. (0 or 2)

2 vs. (0 or 1)

1

1x

dx

3

CS 2750 Machine Learning

Multiclass classification. Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0

1

2

Multiclass classification. Approach 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 vs {1,2}

1 vs {0,2}

2 vs {0,1}

0

1

2

4

Multiclass classification. Approach 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Region of

nobody

0 vs {1,2}

1 vs {0,2}2 vs {0,1}

0

1

2

Ambiguous

region

One versus the rest (OVR)

Unclear how to decide on what class to choose in some regions

– Ambiguous region:

• 0 vs. (1 or 2) classifier says 0

• 1 vs. (0 or 2) classifier says 1

– Region of nobody:

• 0 vs. (1 or 2) classifier says (1 or 2)

• 1 vs. (0 or 2) classifier says (0 or 2)

• 2 vs (1 or 2) classifier says (1 or 2)

One solution: Use discriminant functions from binary models

• compare discriminant functions defined on binary classifiers for

single option:

– discriminant function for i trained on i vs. rest

)()(xgxg restvsii 

5

Multiclass classification. Approach 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 vs {1,2}

1 vs {0,2}2 vs {0,1}

0

1

2

One vs One (OVO)

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 2:

– A binary logistic regression on all pairs

Class decision: class label based on who gets the majority

– Does not work all the time

0 vs. 1

0 vs. 2

1 vs. 2

1

1x

dx

6

Multiclass classification. Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0

1

2

Multiclass classification (OVO)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

1 vs 2

0 vs 1

0 vs 2

0

1

2

7

CS 2750 Machine Learning

Multiclass classification OVO

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ambiguous

region

1 vs 2

0 vs 1

0 vs 2

0

1

2

One vs one (OVO) model

Unclear how to decide on what class to choose in some regions

– Ambiguous region:

• 0 vs. 1 classifier says 0

• 1 vs. 2 classifier says 1

• 2 vs. 0 classifier says 2

One possible solution:

• Use discriminant functions from binary models

• Define a new discriminant function by adding the discriminant

functions for pairwise classifiers





ij

jvsii xgxg)()(

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Multiclass classification.

1 vs 2

0 vs 1

0 vs 2

0

1

2

Multiclass classification

OVR and OVO:

• define multiclass classifier using output classes of binary

classifiers

Problems: ambiguous regions, regions of nobody

Solution: define discriminant functions for the multiclass case using

the discriminant functions from binary classification problems

A Concern:

• Calibration of the discriminant functions

– Discriminant functions from independently trained binary

classification models may not be directly comparable

Solution:

• joint learning of discriminant functions

9

Softmax function

• Multiple inputs  outputs probabilities







1

0

)exp(

)exp(
)(

k

j

j

i
ii

z

z
z 1)(

1

0






k

i

ii z

)(00 z

)(11 z

)(11  kk z

0z

1z

1kz

Multiclass classification with softmax







1

0

)exp(

)exp(
)|()(

k

j

T

j

T

i
i iypg

xw

xw
xx  

i

ig 1)(x

• Multiclass discriminant functions (they are related via softmax)

1

1x

dx

softmax

)(0 xg0z

1z

2z







Weights

w

)(1 xg

)(2 xg

10

CS 2750 Machine Learning

Multiclass classification with softmax

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3 0

1

2

Learning of the softmax model

• Learning of parameters w: statistical view

Multi-way

Coin toss























































































1

..

0

0

..

0

..

1

0

0

..

0

1

y

)|0()(0 xx  yPg

)|1()(1 xx  kyPgk

y
Softmax

network

Assume outputs y are transformed to one hot

vectors:

 1..10  ky

0z

1kz

11

Learning of the softmax model

• Learning of the parameters w: statistical view

• Likelihood of outputs

• We want parameters w that maximize the likelihood

• Log-likelihood trick

– Optimize log-likelihood of outputs instead:

• Corresponding error

(negative log likelihood)





ni

ii

ni

ypypDl
,..1,..1

)|(log)|(log),(wx,wx,w







1

0

,

1

)(log),(
k

j

ijji

n

i

gyDJ xw













ni

ij

k

j

ji

ni

y

ij

k

j

gyg ji

,..1

1

0

,

,..1

1

0

)(log)(log , xx

)|(),|(),(
,..1

w,xwXYw ii

ni

yppDL 




Learning of the softmax model

• Error to optimize:

• Gradient

• The same very easy gradient update as used for the binary

logistic regression

• We have to update the weights of k networks







1

0

,

1

)(log),(
k

j

ijji

n

i

gyDJ xw

))((),(,,

1

ijjiui

n

iju

gyxDJ
w

xw 










n

i

iijjijj gy
1

,))((xxww 

12

Decision trees

Decision tree classification

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region

1 1

1

0 0

0 0

0
0

01

1
1

0 0

0
0

1

1x

2x

13

Decision tree classification

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region

1 1

1

0

0

1

1
1

0 0

0
0

1

2x

1x

0

0

0
0

0

Decision tree classification

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi

that recursively split the input space x

• Classify at the bottom of the tree

03 x

x

t f

01 x 02 x

t tf f

Example:

Binary classification

Binary attributes

1 0 0 1

0

1 0

321 ,, xxx

}1,0{

classify

02 x

t

14

Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi

that recursively split the input space x

• Classify at the bottom of the tree

03 x

)0,0,1(),,(321  xxxx

t f

01 x 02 x

t tf f

Example:

Binary classification

Binary attributes

1 0 0 1

0

1 0

321 ,, xxx

}1,0{

classify

02 x

t

Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi

that recursively split the input space x

• Classify at the bottom of the tree

03 x

)0,0,1(),,(321  xxxx

t f

01 x 02 x

t tf f

1 0 0 1

0

1 0classify

02 x

Example:

Binary classification

Binary attributes 321 ,, xxx

}1,0{

t

15

Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi

that recursively split the input space x

• Classify at the bottom of the tree

03 x

)0,0,1(),,(321  xxxx

t f

01 x 02 x

t tf f

1 0 0 1

0

1 0classify

02 x

Example:

Binary classification

Binary attributes 321 ,, xxx

}1,0{

t

Decision trees

Decision tree model:

• formed by simple conditions (tests) on individual dimensions xi

that recursively split the input space x

• Classify at the bottom of the tree

03 x

)0,0,1(),,(321  xxxx

t f

01 x 02 x

t tf f

1 0 0 1

0

1 0classify

02 x

Example:

Binary classification

Binary attributes 321 ,, xxx

}1,0{

t

16

Decision tree splits

Splits/conditions:

• Equalities on categorical, binary values

– or

• Inequalities for real values

–
03 x

t f

201 x 503 x

t tf f

1 0 0 1 1 0classify

03 x Bluex 2

5.03 x

…

Tree construction

How to construct /learn the decision tree?

Top-down algorithm:

• Finds the best split (condition) that

can improve the classification

performance after that split

• Stops when no improvement possible

Question: How to measure the improvement?

We measure it with the help of :

• Impurity measure: measures the degree of mixing of the two

classes in the subset of the training data D

– Worst (maximum impurity) when # of 0s and 1s is the same

x

t f
?

17

Impurity measure

Let D be a collection of data instances:

• Let D0 and D1 be subsets of D corresponding to class 0 and class 1

• Proportion if class 0

and class 1 instances

Impurity measure I(D)

• Measures the degree of mixing of the two classes in D

• The impurity measure should be:

– Largest when data are split evenly among the classes

– Should be 0 when all data belong to the same class

||

|| 0
0

D

D
p 

Highly impure region Moderately impure region Pure region

5.00 p

5.01 p 8.01 p 11 p

||

|| 1
1

D

D
p 

Impurity measures

• There are various impurity measures used in the literature

– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)





k

i

ii ppDEntropyDI
1

log)()(





k

i

ipDGiniDI
1

2
1)()(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Example for k=2
5.01 p

8.01 p

11 p

18

Classification improvement

Idea: add the split that reduces the impurity the most

Gain due to split – expected reduction in the impurity









)(

||

||
)(

||

||
)(),(f

f
t

t

DI
D

D
DI

D

D
DIADGain

x

t f

t f)(DI

)(tDI)(fDI

Split condition

A ?

B ?
D

x

t f
B ?

D

)(DI

tD
fD

Decision tree learning

Greedy learning algorithm:

– Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

Algorithm sketch:

Repeat until no or small improvement in the impurity

– Find the attribute and the condition with the highest gain

– Add the condition to the tree and split the set accordingly

Limitations: greedy approach:

– It looks at a single attribute condition and gain in each step

– May fail when the combination of attributes is needed to

improve the purity

19

Decision tree learning

• Limitations of greedy methods

Cases in which only a combination of two or more attributes

improves the impurity

1 1

1 1

0 0

00

0 0

0
0

1

1

1

1

Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may

do worse in terms of the generalization error

Solutions to the overfitting problem:

• Solution 1. Build the tree then prune the branches

– Build the tree, then eliminate leaves that overfit

– Use validation set to test for the overfit

• Solution 2. Prune while building the tree

– Test for the overfit in the tree building phase

– Stop building the tree when performance on the validation

set deteriorates

20

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase

in the botton-up fashion by using the validation set to test for the

overfit

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase

in the botton-up fashion by using the validation set to test for the

overfit

Compare: #Errors (V) vs #Error (V’) + # Errors(V’’)

V

V’ V’’

21

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase

in the botton-up fashion by using the validation set to test for the

overfit

Compare: #Errors (V) < #Error (V’) + # Errors(V’’)

V

V’ V’’

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase

in the botton-up fashion by using the validation set to test for

the overfit

Compare: #Errors (V) < #Error (V’) + # Errors(V’’)

V

V’ V’’

