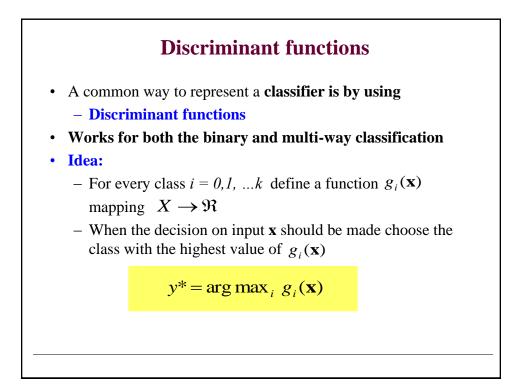
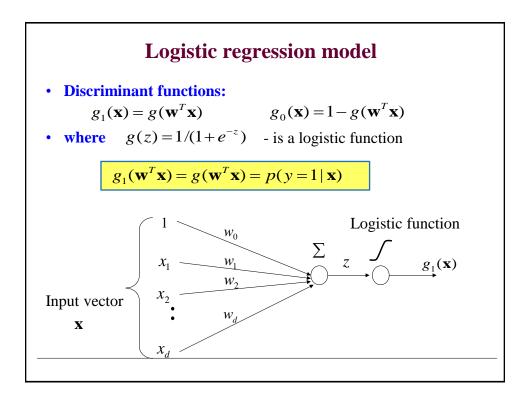
CS 1675 Machine Learning Lecture 12

Generative models for classification

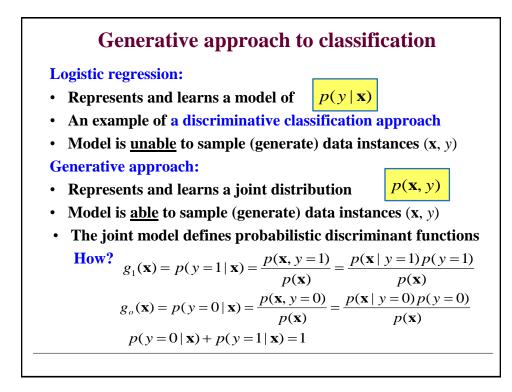
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

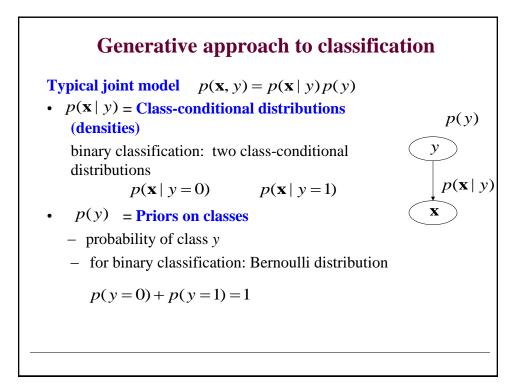
Classification		
 Data: D = {d₁, d₂,,d_n} d_i =< x_i, y_i > - y_i represents a discrete class value Goal: learn f : X → Y 		
 Binary classification A special case when Y ∈ {0,1} 		
 First step: – we need to devise a model of the function f 		

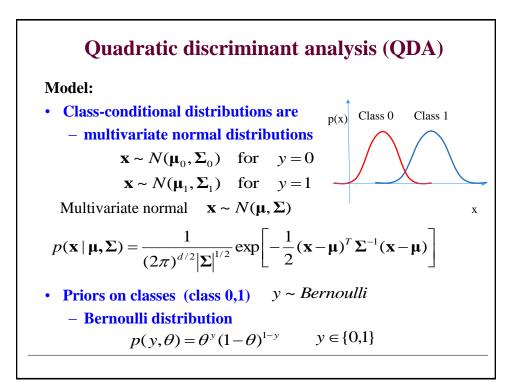


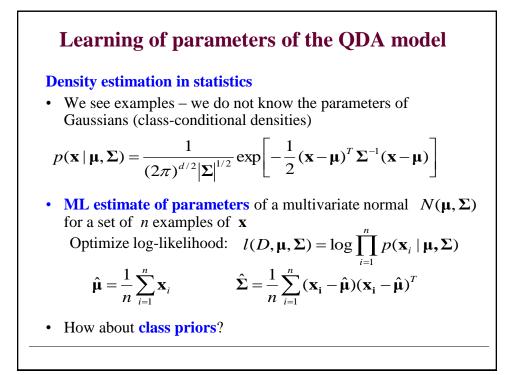


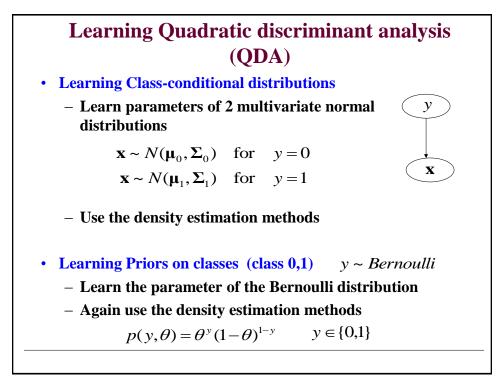


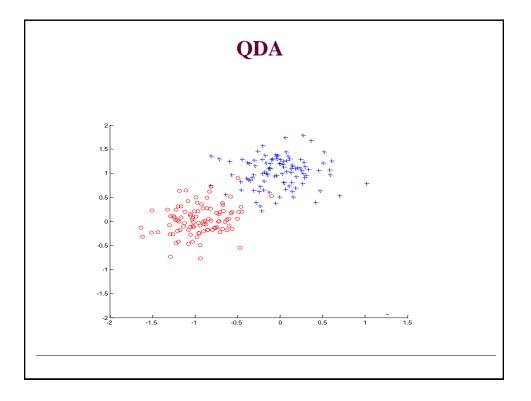


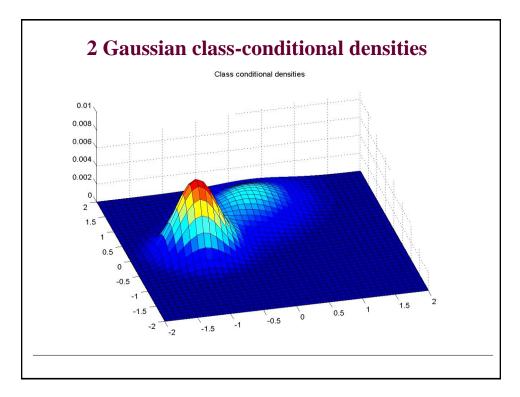


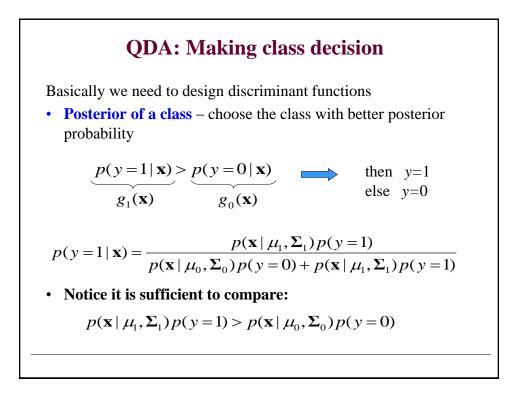


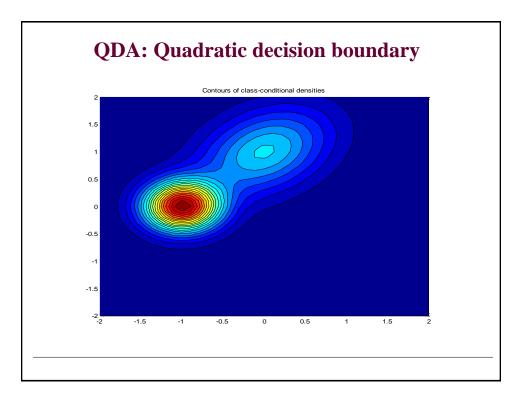


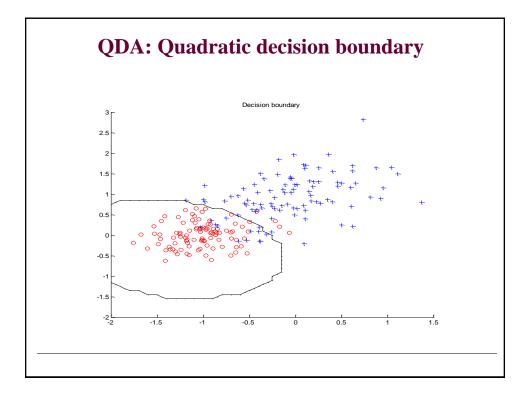


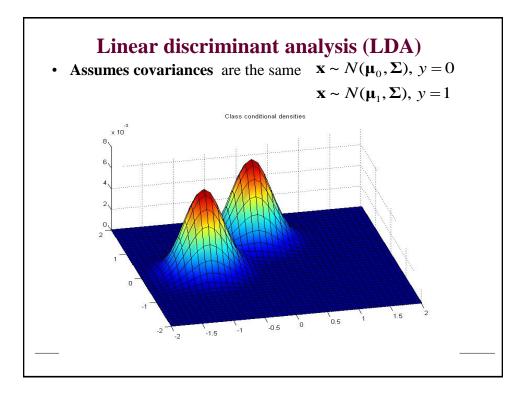


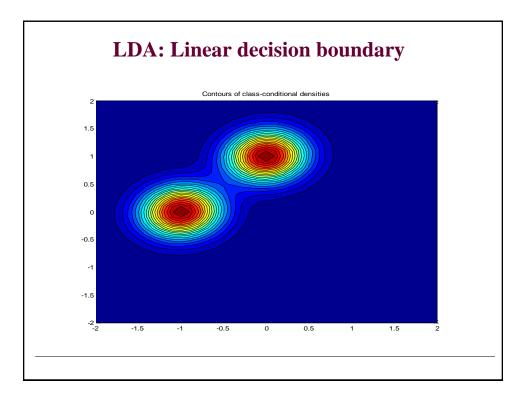


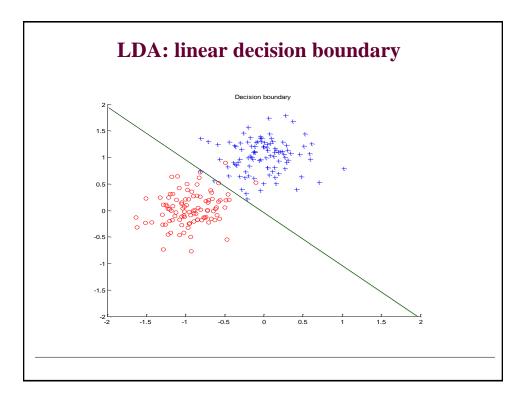


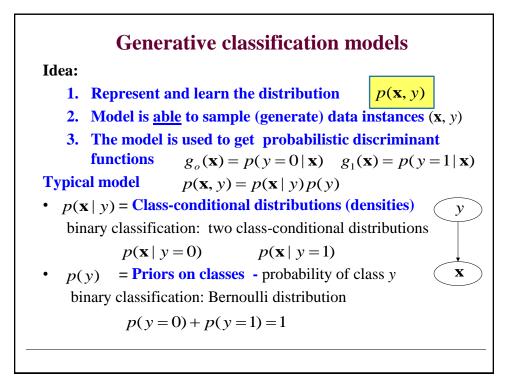


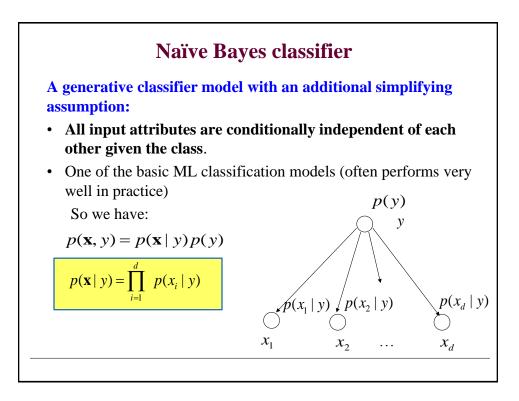












Learning parameters of the model

Much simpler density estimation problems

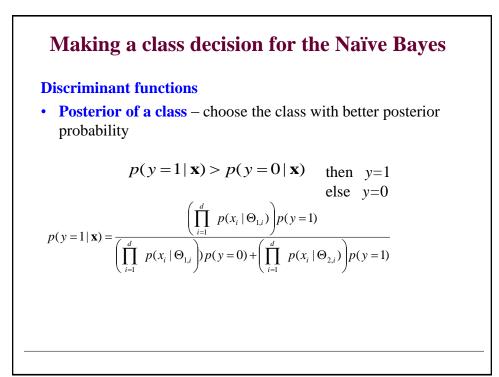
• We need to learn:

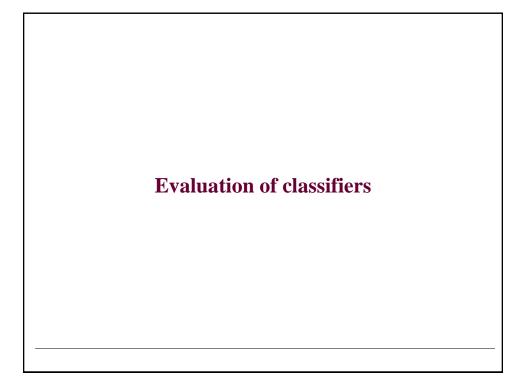
 $p(\mathbf{x} | y=0)$ and $p(\mathbf{x} | y=1)$ and p(y)

• Because of the assumption of the conditional independence we need to learn:

for every input variable i: $p(x_i | y = 0)$ and $p(x_i | y = 1)$

- Much easier if the number of input attributes is large
- Also, the model gives us a flexibility to represent input attributes of different forms !!!
- E.g. one attribute can be modeled using the Bernoulli, the other using Gaussian density, or a Poisson distribution





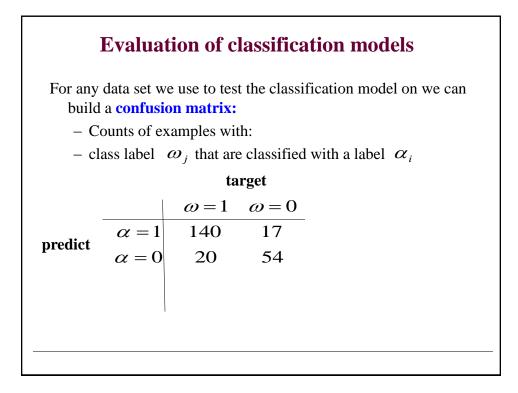
Classification model learning

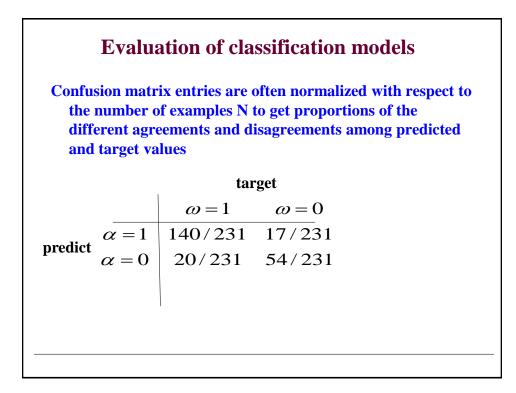
Learning:

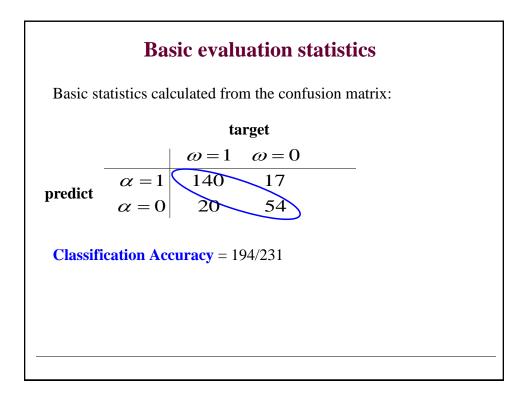
- Many different ways and objective criteria used to learn the classification models. Examples:
 - Mean squared errors to learn the discriminant functions
 - Negative log likelihood (logistic regression)

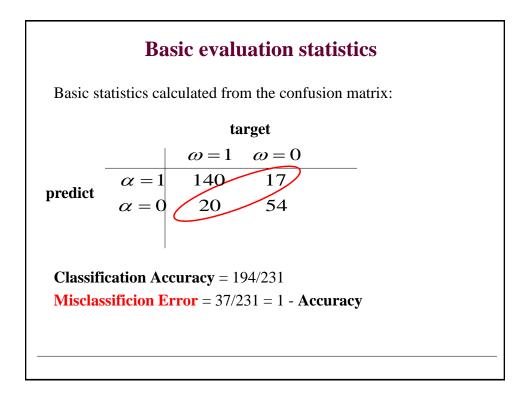
Evaluation:

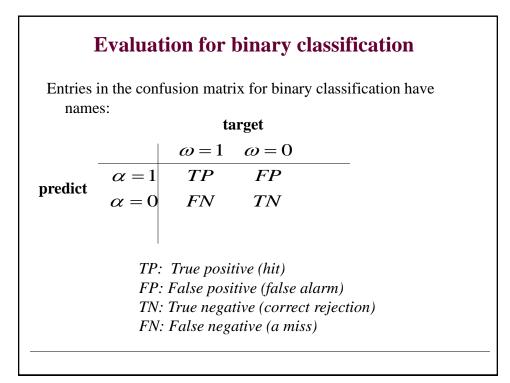
- One possibility: Use the same error criteria as used during the learning (apply to train & test data). Problems:
 - May work for discriminative models
 - Harder to interpret for humans.
- **Question:** how to more naturally evaluate the classifier performance?











	Additional statistics
• Sensitivity (r	SENS = $\frac{TP}{TP + FN}$
Specificity	$SPEC = \frac{TN}{TN + FP}$
Positive pred	ctive value (precision)
	$PPT = \frac{TP}{TP + FP}$
Negative pre	lictive value
	$NPV = \frac{TN}{TN + FN}$
	TN + FN

