CS 1675 Machine Learning
Lecture 12

Generative models for classification

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Classification

« Data: D={d,d,,.d}
d, =<Xx,,y; >
— Yy, represents a discrete class value
« Goal: learn f: XY

» Binary classification
— Aspecial case when Y €{0,1}

 First step:
— we need to devise a model of the function f
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Discriminant functions

« A common way to represent a classifier is by using
— Discriminant functions
« Works for both the binary and multi-way classification
* ldea:
— For every class i = 0,1, ...k define a function g;(X)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y*=arg max; g;(x)

Logistic regression model

» Discriminant functions:
g, (X) = g(w'x) Jo(X) =1—g(W'x)
« where g(z)=1/(1+e*) -isalogistic function

g, (W'x) =g(w'x) = p(y =1|x)
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Logistic function

1

Function: —
9D ="e 9

« Is also referred to as a sigmoid function
« takes a real number and outputs the number in the interval [0,1]

» Models a smooth switching function; replaces hard threshold
function

Logistic (smooth) switching Threshold (hard) switching

Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y|X)
« An example of a discriminative classification approach

» Model is unable to sample (generate) data instances (X, y)
Generative approach:
» Represents and learns a joint distribution pP(X,y)
« Model is able to sample (generate) data instances (X, y)
» The joint model defines probabilistic discriminant functions

HOW? o (%) = py =1[x) = &Y =D _ pXly=Dp(y=1)
' P(x) P(x)

g.(x) = p(y =0[x) = P&Y=0) _ pX|y=0)p(y=0)
’ P(x) P(x)

p(y=0|x)+ p(y=1|x) =1




Generative approach to classification

Typical joint model  p(x,y) = p(x|y) p(y)
« p(X]y) = Class-conditional distributions

(densities)

binary classification: two class-conditional

distributions

p(x|y=0) p(x|y=1) p(x|y)

« pP(Y) =Priorson classes

— probability of class y

— for binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

p(y)

Quadratic discriminant analysis (QDA)

Model:
« Class-conditional distributions are p(x;‘ ClassO  Class 1
— multivariate normal distributions |
X~N(n,,x,) for y=0
X~N(,,x,) for y=1
Multivariate normal X~ N (p, X) X

1 1
p(X|m,X) = —EXID[——(X—u)T z‘-1(X—u)}

(Zﬂ)d/2|2|1/2 2
« Priorson classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,0)=6"(1-0)" y {0}




Learning of parameters of the QDA model

Density estimation in statistics

» We see examples — we do not know the parameters of
Gaussians (class-conditional densities)

1 1 Tlpy
D(X|H,Z)—W3Xp[—§(><—u) X7(x H)}

« ML estimate of parameters of a multivariate normal N (p, X)
for a set of n examples of x .
Optimize log-likelihood: 1(D,p,Z)=log ] | p(x; | 1. X)
i=1
L1 o 1 N N
H:_in ZZ_Z(Xi_N)(Xi_H)T
n = L )

« How about class priors?

Learning Quadratic discriminant analysis

(QDA)

* Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

X~N(n,,x,) for y=0
X~N(,,x,) for y=1

— Use the density estimation methods

« Learning Priors on classes (class 0,1) y ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(y,0)=6"1-0)"" y {01}
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2 Gaussian class-conditional densities

Class conditional densities




QDA: Making class decision

Basically we need to design discriminant functions

 Posterior of a class — choose the class with better posterior
probability

P(y=1[X)>p(y=0|X)  mmmp then y=1
g, (%) 9. (%) else y=0

P(X] 4, ) p(y =1)

—1|x) =
P A T a0 =) POy = )+ PO 2, E) PCY =D

 Notice it is sufficient to compare:
P(X| 4, Z,) P(Y =1) > p(X| 45, X)) P(Y =0)

QDA: Quadratic decision boundary

Contours of class-conditional densities




QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)

« Assumes covariances are thesame X~ N(u,, %), y=0

x~N(u,x), y=1




LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary




Generative classification models
Idea:
1. Represent and learn the distribution p(x, y)
2. Model is able to sample (generate) data instances (X, Y)
3. The model is used to get probabilistic discriminant
functions  g,(x)=p(y=0[x) g,(x) = p(y=1|x)
Typical model P, y) = p(X| y) p(Yy)
* p(x]y) = Class-conditional distributions (densities)

binary classification: two class-conditional distributions
p(x|y=0) p(x|y=1)
* p(y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=)=1

Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption:

« All input attributes are conditionally independent of each
other given the class.

 One of the basic ML classification models (often performs very
well in practice)

So we have: P(Y)
: oy
p(X, y) = p(X| y)p(y) \
pxIy)=]T px1y)
- (x|y) /p(X; |y) p(Xs 1Y)
O O
X X, X4
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Learning parameters of the model

Much simpler density estimation problems
« We need to learn:
p(x|y=0) and p(x|y=1) and p(y)

 Because of the assumption of the conditional independence we
need to learn:

for every input variable i: p(X; | y =0) and p(x; |y =1)
« Much easier if the number of input attributes is large

 Also, the model gives us a flexibility to represent input
attributes of different forms !!!

« E.g. one attribute can be modeled using the Bernoulli, the
other using Gaussian density, or a Poisson distribution

Making a class decision for the Naive Bayes

Discriminant functions

+ Posterior of a class — choose the class with better posterior
probability

p(y=1|X)> p(y=0[X) then y=1
else y=0

(H p(xi |®1,i)Jp(y=1)
p(y =11x) = — = ;
(H p(xi|®1,i])p(y=0)+( p(xi|®2,i)Jp(y:1)
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Evaluation of classifiers

Classification model learning

Learning:
« Many different ways and objective criteria used to learn the
classification models. Examples:

— Mean squared errors to learn the discriminant functions
— Negative log likelihood (logistic regression)
Evaluation:

* One possibility: Use the same error criteria as used during the
learning (apply to train & test data). Problems:

— May work for discriminative models
— Harder to interpret for humans.

* Question: how to more naturally evaluate the classifier
performance?
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Evaluation of classification models

For any data set we use to test the classification model on we can

build a confusion matrix:

— Counts of examples with:
— class label @ that are classified with a label ;

target
wo=1 w=0
a=1 140 17
20 54

predict

Evaluation of classification models

Confusion matrix entries are often normalized with respect to
the number of examples N to get proportions of the
different agreements and disagreements among predicted
and target values

target
w=1 =0
a=1)|140/231 17/231
20/231 54/231

redict
P a=0
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Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target
‘ wo=1 w=0
14 17
2 5

a=1

redict
P a=0

Classification Accuracy = 194/231

Basic evaluation statistics

target
wo=1 @o©=0
a=1 14 17
20 54

predict

Classification Accuracy = 194/231
Misclassificion Error = 37/231 =1 - Accuracy

Basic statistics calculated from the confusion matrix:
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

w=1 w=0
o =1 TP FP
FN TN

predict

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)
FN: False negative (a miss)

Additional statistics

Sensitivity (recall) TP

Specificity
SPEC = _ TN
TN+ FP

Positive predictive value (precision)

PPT = _TP
TP+ FP
» Negative predictive value
NPV = _IN
TN +FN
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Binary classification: additional statistics

Confusion matrix:
target

1 0
oredict 1 140 10 PPV =140/150
0 20 180 NPV =180/200
SENS =140/160 SPEC =180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)

F1 score: E1_ 0% SENS * PPV
harmonic mean of SENS and PPV SENS + PPV

Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

W' X+W, =0 Normal or
direction of a plane
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Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

w'X+w, =0 Normal or
direction of a plane

WX+ W,

Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

WT X+W, = 0 Normal or
direction of a plane

|
- Question: how good is the
. model with parameters w in

terms of class discriminability
at different decision thresholds?

R ".-“4:. WX+ W,
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Receiver Operating Characteristic (ROC)

@, w,
— IX* ~___
» Probabilities:
— SENS P(X > X*|X € a,)
- SPEC threshold P(X <X*[X & @)

Receiver Operating Characteristic (ROC)

* ROC curve plots :
SN= p(X>X*|Xew) - @ @,
1-SP= p(X > X*| X € ) o

for different x*

SENS ﬁ
P(X>X*|X € m,) :i,

"1-SPEC P(X>x*|x € @,)
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ROC curve

Case 1 «  Case 2 « Case 3
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Receiver operating characteristic

« ROC

— shows the discriminability between the two classes under
different thresholds representing different decision biases

 Decision bias
— can be changed using the different loss function

» Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5
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