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Generative models for classification 

                   

Classification 

• Data:  

 

–        represents a discrete class value  

• Goal: learn  

 

• Binary classification 

– A special case when   

 

• First step:  

– we need to devise a model of the function f 
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Discriminant functions 

• A common way to represent a classifier is by using  

– Discriminant functions 

• Works for both the binary and multi-way classification 

• Idea:  

– For every class i = 0,1, …k  define a function 

 mapping 

– When the decision on input x should be made choose the 

class with the highest value of 
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Logistic regression model 

• Discriminant functions: 

 

• where 
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Logistic function 

Function:  

 

• Is also referred to as a sigmoid function 

• takes a real number and outputs the number in the interval [0,1] 

• Models a smooth switching function; replaces hard threshold 

function 
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Generative approach to classification 

Logistic regression:   

• Represents and learns a model of   

• An example of a discriminative classification approach 

• Model is unable to sample (generate) data instances (x, y) 

Generative approach:  

• Represents and learns a joint distribution 

• Model is able to sample (generate) data instances (x, y) 

• The joint model defines probabilistic discriminant functions 

How?   
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Generative approach to classification 

Typical joint model 

•              = Class-conditional distributions 

(densities)  

 binary classification:  two class-conditional 

distributions 

 

•              = Priors on classes   

– probability of class y 

–  for binary classification: Bernoulli distribution 
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Quadratic discriminant analysis (QDA) 

Model:    

• Class-conditional distributions are  

– multivariate normal distributions 

 

 

 

 

 

 

• Priors on classes  (class 0,1) 

– Bernoulli distribution 
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Learning of parameters of the QDA model 

Density estimation in statistics 

• We see examples – we do not know the parameters of 
Gaussians (class-conditional densities) 

 

 

 

• ML estimate of parameters of a multivariate normal            
for a set of  n examples of  x  

Optimize log-likelihood: 

 

 

 

• How about class priors? 
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Learning Quadratic discriminant analysis 

(QDA) 

• Learning Class-conditional distributions  

– Learn parameters of 2 multivariate normal 

distributions 

 

 

 

– Use the density estimation methods 

 

• Learning Priors on classes  (class 0,1) 

– Learn the parameter of the Bernoulli distribution 

– Again use the density estimation methods 
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QDA 
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QDA: Making class decision 

Basically we need to design discriminant functions 

• Posterior of a class – choose the class with better posterior 

probability 

 

 

 

 

 

 

• Notice it is sufficient to compare:  
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QDA: Quadratic decision boundary 
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QDA: Quadratic decision boundary 
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Linear discriminant analysis (LDA) 
• Assumes covariances  are the same 0,),(~ 0 yN Σμx

1,),(~ 1 yN Σμx
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LDA: Linear decision boundary 
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LDA: linear decision boundary 
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Generative classification models 

Idea:  

1. Represent and learn the distribution 

2. Model is able to sample (generate) data instances (x, y) 

3. The model is used to get  probabilistic discriminant 

functions 

Typical model 

•              = Class-conditional distributions (densities)  

 binary classification:  two class-conditional distributions 

 

•              = Priors on classes  - probability of class y 

 binary classification: Bernoulli distribution 
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Naïve Bayes classifier 

A generative classifier model with an additional simplifying 

assumption:  

• All input attributes are conditionally independent of each 

other given the class. 

• One of the basic ML classification models (often performs very 

well in practice)  

So we have: 
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Learning parameters of the model 

Much simpler density estimation problems 

• We need to learn: 

    and                        and  

• Because of the assumption of the conditional independence we 

need to learn:  

 for every input variable i:                        and 

• Much easier if the number of input attributes is large  

• Also, the model gives us a flexibility to represent input 

attributes of different forms !!! 

• E.g. one attribute can be modeled using the Bernoulli, the 

other using Gaussian density, or a Poisson distribution 
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Making a class decision for the Naïve Bayes 

Discriminant functions 

• Posterior of a class – choose the class with better posterior 

probability 
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Evaluation of classifiers 

Classification model learning 

Learning:  

• Many different ways and objective criteria used to learn the 

classification models. Examples:  

– Mean squared errors  to learn the discriminant functions 

– Negative log likelihood (logistic regression) 

Evaluation:  

• One possibility:   Use the same error criteria as used during the 

learning (apply to train & test data). Problems:  

– May work for discriminative models  

– Harder to interpret for humans.   

• Question:  how to more naturally evaluate the classifier 

performance? 
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Evaluation of classification models 

For any data set we use to test the classification model on we can 

build a confusion matrix:  

– Counts of examples with: 

– class label          that are classified with a label 
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Evaluation of classification models 

Confusion matrix entries are often normalized with respect to 

the number of examples N to get proportions of the 

different agreements and disagreements among predicted 

and target values  
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Basic evaluation statistics 

Basic statistics calculated from the confusion matrix:  

 

 

 

 

 

 

Classification Accuracy = 194/231 

 

predict 

target 

54200

171401

01













Basic evaluation statistics 

Basic statistics calculated from the confusion matrix:  

 

 

 

 

 

 

 

Classification Accuracy = 194/231 

Misclassificion Error = 37/231 = 1 - Accuracy 
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Evaluation for binary classification 

Entries in the confusion matrix for binary classification have 

names:  
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TP:  True positive (hit) 

FP: False positive (false alarm) 

TN: True negative (correct rejection) 

FN: False negative (a miss) 

predict 

target 

Additional statistics 

• Sensitivity (recall) 

 

 

• Specificity  

 

 

• Positive predictive value (precision) 

 

 

• Negative predictive value 
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Binary classification: additional statistics 

Confusion matrix:  

 

 

 

 

 
Row and column quantities: 

– Sensitivity (SENS) 

– Specificity (SPEC) 

– Positive predictive value (PPV) 

– Negative predictive value (NPV) 
 

F1 score:  

harmonic mean of SENS and PPV  
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Binary classification models 

Often project data points to one dimensional space: 

Defined for example by:  wTx+w0  or  p(y=1|x,w) 

00 wT
xw Normal or  

direction of a plane 

0wT xw

*x

0* wT xw
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Binary classification models 

Often project data points to one dimensional space: 

Defined for example by:  wTx+w0  or  p(y=1|x,w) 

00 wT
xw Normal or  

direction of a plane 

0wT xw

*x

0* wT xw

Binary classification models 

Often project data points to one dimensional space: 

Defined for example by:  wTx+w0  or  p(y=1|x,w) 

00 wT
xw Normal or  

direction of a plane 

0wT xw

*x

0* wT xw

Question:  how good is the  

model with parameters w in  

terms of class discriminability  

at different decision thresholds? 
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Receiver Operating Characteristic (ROC) 

• Probabilities: 

– SENS 

– SPEC 
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Receiver Operating Characteristic (ROC) 

• ROC curve plots : 
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ROC curve 
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Receiver operating characteristic 

• ROC  

– shows the discriminability between the two classes under 

different thresholds representing different decision biases 

• Decision bias  

– can be changed using the different loss function 

 

• Quality of a classification model:  

– Area under the ROC 

– Best value 1, worst (no discriminability): 0.5 

 


