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Linear regression

Linear regression

• Shorter (vector) definition of the model

– Include bias constant in the input vector
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Linear regression. Example

• 1 dimensional input
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Linear regression. Example.

• 2 dimensional input ),( 21 xxx
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Linear regression: error

• Data:

• Function:

• Error: a measure of misfit of the model and the data
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Solving linear regression

• The optimal set of weights satisfies:

Leads to a system of linear equations (SLE) with d+1 unknowns 

of the form

Solution to SLE:

Assuming X is an nxd data matrix with rows corresponding to 

examples and columns to inputs, and y is nx1 vector of outputs, 

then  
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Gradient descent solution

Objective: optimize the weights in the linear regression model

An alternative to SLE solution: 

• Gradient descent

Idea:

– Adjust weights in the direction that improves the Error

– The gradient tells us what is the right direction

- a learning rate (scales the gradient changes)
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Batch vs online gradient algorithm

• The error function defined on the complete dataset D

• We say we are learning the model in the batch mode:

– All examples are available at the time of learning

– Weights are optimized with respect to all training examples

• An alternative is to learn the model in the online mode

– Examples are arriving sequentially

– Model weights are updated after every example

– If needed examples seen can be forgotten
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Online gradient descent algorithm

Online-linear-regression (stopping_criterion)

Initialize weights

initialize i=1;

while stopping_criterion = FALSE

select the next data point

set learning rate

update weight vector

end 

return weights
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Advantages: very easy to implement, works on continuous 
data streams

Extensions of simple linear model
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Non-linear (quadratic) model

Linear regression model

• Linear model:

• Notice: the above model does not explain variation in 

observed ys for the data 
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Statistical model of regression

A statistical model of linear regression:

is a random noise, represents deviations not captured with
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Statistical model of regression

A statistical model of linear regression:

is a random noise, represents deviations not captured with
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Statistical model of regression

A statistical model of linear regression:

• The conditional distribution of y given x
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ML estimation of the parameters

• likelihood of predictions =  the probability of observing 

outputs y in D  given

• Maximum likelihood estimation of parameters w

– parameters maximizing the likelihood of predictions

• Log-likelihood trick for the ML optimization 

– Maximizing the log-likelihood is equivalent to 

maximizing the likelihood  
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ML estimation of the parameters

• Using conditional density 

• We can rewrite  the log-likelihood as
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Did we see a similar expression before? 

ML estimation of the parameters

• Using conditional density 

• We can rewrite  the log-likelihood as

• Maximizing the predictive log likelihood with regard to w, is 

equivalent to minimizing the mean squared error function
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ML estimation of parameters

• Criteria based on the mean squares error function and the 

log likelihood of the output are related

• We know how to optimize parameters w

– the same approach as used for the least squares fit

• But what is the ML estimate of the variance of the noise?

• Maximize                       with respect to variance
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Regularized linear regression

• If the number of parameters is large relative to the number of 
data points used to train the model,  we face the threat of 
overfitting (generalization error of the model goes up)

• The prediction accuracy can be often improved by setting 
some coefficients (weights) of the model to zero

– Increases the bias, reduces the variance of estimates

• Solutions:

– Subset selection

– Ridge regression

– Lasso regression

– Principal component regression
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Regularization: motivation

• If the model is too complex and can cause overfitting, its 
prediction accuracy can be improved by removing some 
inputs from the model = setting their coefficients to zero
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Ridge regression

Question: how to force the weights to 0 ?

• Error function for the standard least squares estimates: 

• We seek: 

• Ridge regression:

• Where

• What does the new error function do?   
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Ridge regression

Ridge regression:

Term                          

• penalizes non-zero weights with the cost that is proportional to         

(a shrinkage coefficient) 

• If an input attribute        has a small effect on improving the error 

function it is “shut down” (driven to 0) by the penalty term

• Inclusion of a shrinkage penalty is often referred to as 

regularization. 
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Regularized linear regression

How to solve the least squares problem if the error function is 

enriched by the regularization term              ?

Answer: The solution to the optimal set of weights w is obtained 

again by solving a set of linear equation.

Standard linear regression:

Solution:

Regularized linear regression:
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where X is an nxd matrix with rows corresponding to 

examples and columns to inputs  
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Lasso regression

• Standard regression:

• Lasso regression/regularization:

• L1 is more aggressive pushing the weights to 0 compared to L2 
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Fit to data Model complexity penalty

Lasso vs Ridge penalty

• Lasso (L1) penalty

• Ridge (L2) penalty

• L1 is more aggressive pushing the weights to 0 compared to L2 
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