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Linear regression

 Shorter (vector) definition of the model
— Include bias constant in the input vector
X= (11X1’X2"”Xd)
f(X) = WX, + WX, +W, X, +...W X, =W' X

w=[w,,w,,... W, ] - parameters (weights)

Input vector <
X . Wy
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Linear regression. Example

« 1 dimensional input X =(X,)
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Linear regression. Example.

« 2dimensional input X = (X, X,)




Linear regression: error
 Data: Di =< Xi,yi >
« Function: X; = f(Xx;)
» Error: a measure of misfit of the model and the data

3= 0 FOx W)

i=1,..n

Solving linear regression
« The optimal set of weights satisfies:

V(3,00 = =23y, —wx)x, =0

Leads to a system of linear equations (SLE) with d+1 unknowns
of the form AW =b

/ 

n n n n n
WOZXLOXH +lexi,1xi,j +...+Wj2xi’jxhj +...+Wd2xi,dxi,j = Zyixiyj
i=1 i=1 i=1 i=1 i=L

Solution to SLE: W = A—lb

Assuming X is an nxd data matrix with rows corresponding to
examples and columns to inputs, and y is nx1 vector of outputs,
then w=(X"X)*X"y




Gradient descent solution

Objective: optimize the weights in the linear regression model

%Z(yi — (X, W))?

i=1,..n

J, = Error(w) =

An alternative to SLE solution:

» Gradient descent
Idea:
— Adjust weights in the direction that improves the Error
— The gradient tells us what is the right direction

wW<«—w—a V, Error, (w)

a >0 - alearning rate (scales the gradient changes)

Batch vs online gradient algorithm

« The error function defined on the complete dataset D

%Z(yi— F(x,W))?

i=1,..n

J, = Error(w) =

« We say we are learning the model in the batch mode:

— All examples are available at the time of learning

— Weights are optimized with respect to all training examples
» An alternative is to learn the model in the online mode

Janine = EFFOR, (W, X,) = 2 (¥, = £ (x,, W)’

online —

— Examples are arriving sequentially
— Model weights are updated after every example
— If needed examples seen can be forgotten




Online gradient descent algorithm

Online-linear-regression (stopping_criterion)
Initialize weights W = (W,, W, W, ... W)
initialize i=1;
while stopping_criterion = FALSE
select the next data point D; =(X;, ;)
set learning rate (i)
update weight vector w <«w+a(i)(y; — f (X;, W))x;
end
return weights

Advantages: very easy to implement, works on continuous
data streams

Extensions of simple linear model

Replace inputs to linear units with m feature (basis) functions
to model nonlinearities

f(X)=w, +iwj¢j (x)

¢;(X) -anarbitrary function of x

Original New Linear
input = input model




Non-linear (quadratic) model

Linear regression model

« Linear model: y= f(x,w)=w"x

» Notice: the above model does not explain variation in
observed ys for the data




Statistical model of regression
A statistical model of linear regression:
Yy=W'X+¢ £~ N(0,5?%)
& is a random noise, represents deviations not captured with w'x

E(y|x)=w"x
Gaussian
noise ¢
Statistical model of regression
A statistical model of linear regression:
Yy=W'X+¢ £~ N(0,5?%)

£ is a random noise, represents deviations not captured with w' x

-

E(y|x)=w"x

+

Gaussian
noise ¢




Statistical model of regression
A statistical model of linear regression:
y=W'X+¢ £~ N(0,6%)
y ~ N(W'x, %)

» The conditional distribution of y given x

1 1 T N2
X, W, = exp| ———(y—WwW X
Pyl o) ov2n p[ P (y ) }

E(y|x)=w'x

ML estimation of the parameters

likelihood of predictions = the probability of observing
outputsy in D given w, o

L(D.w,0) =] ] p(Y: 1%,.W, o)

Maximum likelihood estimation of parameters w
— parameters maximizing the likelihood of predictions
w’ =argmax [ | p(y; | x;,w,0o)
w i=1
Log-likelihood trick for the ML optimization

— Maximizing the log-likelihood is equivalent to
maximizing the likelihood

I(D,w,o) =log(L(D,w, o)) =log ﬁ p(y; | X;,w, o)




ML estimation of the parameters

» Using conditional density
1 1
W, o) = — == (y— f(x,w))*
p(y |Xx,w,o) T exp[ o (y—f(x,w))7]

» We can rewrite the log-likelihood as
I(D,w,o) =log(L(D,w, o)) =log |n| py; | X;,w,o)
i=1
n n 1
= Zlog pCy; | X, w,0) = Z|:_ 552 (Y, —W'x;)? _C(O_):l
i=1 im

- 12 Zn:(yi —w'x;)? HC (o)
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Did we see a similar expression before?

ML estimation of the parameters

 Using conditional density
1 1
= - _ —_ f y 2
ply | xX,w, o) o exp[ o (y—f(x,w))°]

» We can rewrite the log-likelihood as
I(D.w, &) = log(L(D,w,5)) =log [ [ p(Y, | X, W, )
i=1

:ilog p(Y;: | X, W, o) :i{_fig(% _WTXi)2 _C(O_)}

-3 W) H{C(e)
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« Maximizing the predictive log likelihood with regard to w, is
equivalent to minimizing the mean squared error function




ML estimation of parameters

Criteria based on the mean squares error function and the
log likelihood of the output are related

Jontine( Vi X;) = log p(y; | X;,w,o)+c(o)

207
We know how to optimize parameters w

— the same approach as used for the least squares fit

But what is the ML estimate of the variance of the noise?
Maximize 1(D,w, o) with respect to variance

67 =23 (v W)

= mean square prediction error for the best predictor

Regularized linear regression

If the number of parameters is large relative to the number of
data points used to train the model, we face the threat of
overfitting (generalization error of the model goes up)

The prediction accuracy can be often improved by setting
some coefficients (weights) of the model to zero

— Increases the bias, reduces the variance of estimates
Solutions:

— Subset selection

— Ridge regression =

— Lasso regression ==

— Principal component regression

10



Regularization: motivation

« If the model is too complex and can cause overfitting, its
prediction accuracy can be improved by removing some
inputs from the model = setting their coefficients to zero

f (X) = WyX, + WX, +W, X, + WX, +... W X, =W' X
Wy, W,... W, - parameters (weights)

Input vector <
X . Wq

%
f(X) = WX, + 0%, +W, X, + WX, +... W, X, =W' X

Ridge regression

Question: how to force the weights to 0 ?
« Error function for the standard least squares estimates:

1
J,(w) = H Z(Yi _WTXi)2
i=1,..n
« Weseek: " = arg min 1 Doy —w'x;)?
w i=1,..n
* Ridge regression:
1
J (w) = P z i _WTXi)Z + ’1”W”L22
i=1,..n
Fit to data Model complexity penalty

d
Where |w]_,*=>w’ and A=0
i=0

What does the new error function do?
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Ridge regression

Ridge regression: 1
3o (W) =— 370y, —wWx)* + 2w,

i=1,.n

d
Term ], = > w’
i=0

* penalizes non-zero weights with the cost that is proportional to
A (ashrinkage coefficient)

« If an input attribute X; has a small effect on improving the error
function it is “shut down” (driven to 0) by the penalty term

* Inclusion of a shrinkage penalty is often referred to as
regularization.

Regularized linear regression

How to solve the least squares problem if the error function is
enriched by the regularization term  A|w/|" ?

Answer: The solution to the optimal set of weights w is obtained
again by solving a set of linear equation.

Standard linear regression:
Vo(3,W) == (v, ~W'x.)x, =0
Nz
Solution:  w*=(X"X) Xy
where X is an nxd matrix with rows corresponding to
examples and columns to inputs
Regularized linear regression:

w*= (Ul + X" X)Xy
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Lasso regression

« Standard reg ression

‘]n(W)_ Dy —wix;)?

i=1,.n

 Lasso regression/regularization:

3,W) 1= T ~wx)f 4 A]w,,
i=1,.n
Fit to data Model complexity penalty
d
”W“Ll - Zl w; | and A=>0
i=0

« L1 is more aggressive pushing the weights to 0 compared to L2

Lasso vs Ridge penalty

d
Lasso (L1) penalty  |w] , = Z| w, |

Ridge (L2) penalty |w|| Zw

« L1 is more aggressive pushing the weights to O compared to L2
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